Evaluation of FCI with the pre-flooded cavity through simple models

KHNP CRI^a, Samsung Electronics^b, KAERI^c, KAIST^d Seung Hyun Yoon^{a*}, Jegon Kim^b, Moon Won Song^c, Hee Cheon NO^d

Introduction

Fuel-Coolant Interaction (FCI)

- Corium-water interaction in a pre-flooded cavity
- ✓ This research does not consider the steam explosion
- Intermediate stage during a ex-vessel severe accident progression
 ✓ Corium release (Vessel breach) -> FCI -> MCCI
- Contain release (vessel breach) -> PCI -> MCCI
- Large heat transfer and pressure-buildup during this phenomenon
 Approximately 40~50% of the initial corium energy releases to the surroundings in a few seconds
- ✓ Main heat transfer mechanism : film boiling with corium particles

Objectives

- · Evaluation of the coolability and the pressure behavior during FCI
- Calculation for initial conditions for MCCI

Method

Tool with lumped and Lagrangian systems

- Corium : Lagrangian approach, Water and Cavity : Lumped approach
- Explicit time discretization, no momentum conservation equation

Models

• Jet breakup length : modified Epstein correlation (corium data-based)

$$E_0 = \frac{1}{13.88 + 22.66 \exp\left(\frac{-D_j \times 10^3}{18.86}\right)}$$

- Jet fragmentation : linear fragmentation
- Heat transfer : film boiling for the corium jet and particles
- Pressure : Van der Waals with steam and hydrogen production

$$P^{n+1} + \frac{a(n^{n+1})^2}{V^2} \left[(V - bn^{n+1}) = n^{n+1} R T_{gas}^n \right]$$

• Average corium temperature at bottom :

$$F_{corium} = f(\frac{E_{total}}{m_{corium}})$$

Results

Input parameters

Parameters	20ton_sat	20ton_sub	100ton_sat	100ton_sub	200ton_sat	200ton_sub
Corium mass (ton)	20	20	100	100	200	200
Corium temperature (K)	3000					
Initial Pressure (MPa)	0.1					
Water depth (m)	6.4					
Initial ΔT_{sub} (K)	0	50	0	50	0	50
Initial D _{release} (m)	0.0762					
Mean D _{particle} (mm)	3.7*					
C ₁₁₂ (1e-3)	2.5**	0.6***	2.5**	0.6***	2.5**	0.6***

* We applied the average value of 6 available data from FARO tests, same as L-27 in Table 3-1.
** Average value of the FARO results with the initially saturated water.

*** Value of the FARO test with the initially subcooled water.

Corium release

Jet breakup length increases as jet discharge diameter increases
 ✓ Jet discharge diameter increases as the high temperature corium interacts with the vessel hole (initially 0.076 m, ICI nozzle)

Pressure and energy

- Final pressure is 2.6 bar for 200 tons of corium with the saturated water condition, when all corium is at bottom
- Also, release energy is 152 GJ and the average corium temperature is 2126 K

Conclusions & Acknowledgement

- With 200 tons of corium release for the water level of 6.4 m and the saturated water, the containment keeps its integrity
- The average corium temperatures show lower values than 2126 K, when all the corium settle down to the bottom
- This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE) (20193110100050)