

Measurements of light-output ratios using inorganic and organic scintillators to identify gamma-ray emitting radionuclides

Seunghyeon Kim, Siwon Song, Taeseob Lim, Jae Hyung Park, Jinhong Kim, Jin Ho Kim, and Bongsoo Lee

Department of energy systems engineering Chung-Ang University

1. Introduction

2. Method and Results

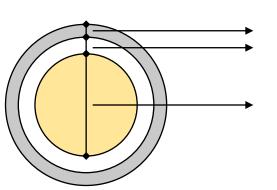
2-1. Method

- 2-2. Materials and Experimental setup
- 2-3. Results

3. Conclusions

- Scintillator is widely used for radionuclide identification.
- Plastic optical fiber coupled sensor has more advantages such as long-distance measurement, flexibility.
- Radionuclide identification requires sufficient size of scintillator to obtain better energy resolution and peak-to-total ratio.
- Plastic optical fiber coupled sensor has the poor energy resolution due to modal dispersion.
- Plastic optical fiber coupled small size scintillator sensor is unsuitable for conventional radionuclide identification method.
- In this study, two gamma radionuclides are identified with light-output ratio of two different scintillators.

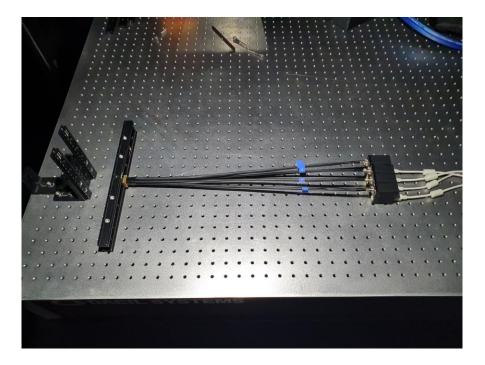
- Measured light-output of scintillator is affected by energy and intensity of incident gamma-ray, characteristics of scintillator.
- Even if the intensity and energy of incident gamma-ray are same, the amount of energy deposited will differ due to the differences in characteristics of scintillator
- The light-output ratio is different depending on the composition of the scintillator and the energy of the incident gamma-ray.
- With the light-output ratio of two scintillators, the energy of incident gamma-ray can be specified.


• Physical Characteristics of GAGG:Ce, YSO, BCF-12 and BCF-20

Scintillator	GAGG:Ce	YSO	BCF-12	BCF-20
Density [g/cm ³]	6.6	4.5	1.05	1.05
Peak emission wavelength [nm]	530	420	435	492
Light yield [photons/MeV]	42000	11000	~ 8000	~ 8000
Hygroscopicity	No	No	No	No

• Specific properties of H11890-210

Spectral response range [nm]	230 to 700
Peak sensitivity wavelength [nm]	400
Effective area [mm]	Ø 8
Dark count [s ⁻¹]	50



Al tape 0.04mm TiO₂ paint 0.15~0.16mm

Scintillator Ø3 mm

- The selected scintillators were unified to cylindrical shape with diameter of 3 mm and height of 15 mm.
- In order to maximize the light collection efficiency and to minimize the external noise, TiO₂ paint was applied to the scintillator surface.
- The brass holder with density of 8.73 g/cm³ was used as shielding material to eliminate the interference with each scintillator

- A 0.5 m-long plastic optical fiber with a diameter of 2 mm was attached to the bottom part of each scintillator.
- Four photon counting modules were used as a light measuring detector.
- The light-outputs emitted from each scintillator were measured simultaneously with four photon counting modules by 5 seconds interval.
- The ¹³⁷Cs and ⁶⁰Co check sources were used.
- The gamma-ray intensity was adjusted by the distance between check source and the sensor.
- The background of scintillator and dark count of photon counting module were measured before each experiment and subtracted as noise.

YSO/

BCF-20

8.32

8.902

8.955

• The light-output ratio of ¹³⁷Cs and ⁶⁰Co

Distance [mm]	GAGG:Ce/	GAGG:Ce/	YSO/	YSO/	Distance [mm]	GAGG:Ce/	
	BCF-12	BCF-20	BCF-12	BCF-20	Distance [mm]	BCF-12	
12	26.722	32.291	13.934	16.837	12	14.74	
37	24.492	30.327	12.955	16.04	37	13.997	
62	24.746	30.682	13.084	16.217	62	14.112	

Light output ratio of ¹³⁷Cs

Light output ratio of ⁶⁰Co

GAGG:Ce/

BCF-20

17.913

17.966

17.857

YSO/

BCF-12

6.844

6.935

7.077

- The light-output ratio is not affected by incident gamma-ray intensity, but only by incident gamma-ray energy.
- Among six combinations of scintillator, the combinations of the inorganic scintillator and the organic scintillator are effective for radionuclide identification.
- The combined sensor has relatively low relative standard deviation than four independent scintillator sensors, in same experimental condition.
- With light output ratio of the inorganic scintillator and the organic scintillator, two gamma radionuclides can be identified.

Thank you