Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 13-14, 2021

Prediction of Low-Pressure Critical Heat Flux using SPACE-RR Code

Hyung Min Son*, Dongwook Jang

Korea Atomic Energy Research Institute, 989-111 Daedeok Daero, Yuseong Gu, Daejeon, 305-353, Korea *Corresponding author: hyungmson@kaeri.re.kr

Introduction

- SPACE-RR code is developed from SPACE for RR safety analysis.
- Two CHF correlations are newly added which are Kaminaga et al. (1998) and HANARO (1992) correlations developed for plate-type and finned rod geometries, respectively. • This study checked prediction capability of embedded CHF correlations by comparing calculation results with those from experiments.

Item	Value
Geometry (Rectangular channel)	
Width/Thickness	2.5", 1/2"(max.)
Length	22.25"
Heater plate width/thickness	2", 0.0038" (or 0.025")
Heated length	19.25"
Geometry (Annular channel)	
Inner/Outer diameter	0.5" (or
	0.790")/0.5625"
	(or 0.8425'')
Heater rod diameter	0.5" (or 0.790")
Heated length	24"
Test condition (65 cases)	
Velocity	5.4~41.6 ft/s
Pressure	24.5~85.7 psia
Subcooling	6~74 °C
Flow direction	Downward

Test by Mirshak et al. (1959)/WNRE (1989)

Test section cross-section (Mirshak et al. (1959))

Item	Value
Geometry (Tube I.D.= 17 mm)	
Hydraulic diameter	7.3 mm
Length	600 mm
Heater diameter	10 mm (including fin)/7.95 mm
Fin thiolongs	(base)
r III UIICKIICSS	0.70 mm
Geometry (Tube I.D.= 24 mm)	
Hydraulic diameter	13.66 mm
Length	600 mm
Heater geometry	Same as above
Test condition (19 cases)	
Mass flux	1,000~5,900

87⁰

670

