Development of Multi-Walled Cold Drawing Process for Improved Accident Tolerant Fuel Cladding in Light Water Reactors

JONG WOO KIM, YOUNG SOO YOON Materials Science & Engineering, Gachon University E-mail : benedicto@gachon.ac.kr

Abstract

- The nuclear fuel claddings used in light water reactors (LWRs) consist of zirconium and a small number of metals.
- However at the time of the accident in Fukusima, Japan, zirconium alloy (Zr-alloy) cladding reacted with high-temperature steam in loss of coolant accident (LOCA) and a large amount of hydrogen gas was generated.
- In order to solve these problems, various studies are underway to development of the accident-tolerant fuel (ATF) cladding.

< Heat treatment sampling >

< Drawn multi-walled tube >

- In this research, a drawing process was used to improved mechanical strength under high temperature conditions by using stainless steel 316L (SUS 316L) tube inside and outside of the existing ZIRLO cladding.
- The development of Multi-Walled Drawing process which is very simple and performs at room temperature can be mass-produced using existing Zr-alloy cladding.

Experimental

> Swaging process

- Swaging is a process that produces an outer diameter of the desired size.
- Swaging process should be

Results

> OM (Optical Microscope)

Figure 4. Cross-sectional OM image (a) to (c) for 9.4Φ MWDC, and (d) to (f) for 9.5 Φ MWDC

pre-ceded, about 15cm in length of the multi-walled tube to hold the front part when drawing.

Figure 1. Swaging process machine

Drawing is a metalworking process which uses tensile

> SEM (Scanning Electron Microscope)

Figure 5. SEM cross-sectional images of samples after 1200°C heat treatment (a)ZIRLO (b)9.5Φ MWDC (C)9.4Φ MWDC

> Weight change

EDS (Energy Electron Microscopy)

	ZIRLO	9.5Φ MWDC	9.40 MWDC
Weight change at 600°C(mg)	1662→1665 (0.18% increase)	1980→1982 (0.10%increase)	2257→2258 (0.04%increase)
Weight change at 900°C(mg)	1510→1551 (2.72% increase)	2577→2612 (1.36% increase)	2344→2373 (1.24% increase)
Weight change at 1200°C(mg)	1687→2275 (34.85%increase)	2071→2509 (21.15%increase)	2141→2504 (16.95%increase)

Element		ZIRLO	9.5Φ MWDC	9.40 MWD0
ОК	Weight%	26.55	14.96	12.17
	Atomic%	67.34	50.09	44.14
Zr L	Weight%	73.45	85.04	87.83
	Atomic%	32.66	49.91	55.86
Totals		200	200	200

Conclusions

In conclusion, it is expected that better accident-tolerant fuel (ATF) can be derived if the interface problem between tubes is solved in Multi-Walled Drawing Cladding (MWDC) production.

forces to stretch metal, glass or plastic.

Swaging process should be preceded, about 15cm in length of the multi-walled tube to hold the front part when drawing.

> Straightening process

- In the process of drawing, the tube is subjected to external force, is warped depending on the stress level.
- To solve this problem, straighten the cladding using a straightening machine.

Figure 3. Straightening process machine

References

Ref. 01. ZINKLE, Steven J., et al. Accident tolerant fuels for LWRs: A perspective. Journal of Nuclear Materials, 448.1-3: 374-379, 2014 **Ref. 02.** AZEVEDO, CRdF. Selection of fuel cladding material for nuclear fission reactors. Engineering Failure Analysis, 18.8: 1943–1962, 2011 Ref. 03. MAIER, Benjamin, et al. Development of cold spray chromium coatings for improved accident tolerant zirconium-alloy cladding. Journal of Nuclear Materials, 519: 247-254, 2019 **Ref. 04.** ZHANG, Qi; JIN, Kaiqiang; MU, Dong. Tube/tube joining technology by using rotary swaging forming method. Journal of Materials Processing Technology, 214.10: 2085–2094, 2014 **Ref. 05.** KUMAR, Praveen; AGNIHOTRI, Geeta. Cold drawing process–A review. metal forming, 3.3, 2013

