A Study on Reconstruction of Intra Fuel Pin Power and Flux Distributions with the iDTMC method in the Monte Carlo Reactor Analyses

May 13, 2021 Inhyung Kim, Inyup Kim, and Yonghee Kim Department of Nuclear & Quantum Engineering Korea Advanced Institute of Science and Technology

Presented at KNS Spring Meeting Online, May 12-14, 2021

Introduction

- Depletion calculation in reactor problems
 - Economy (core life time, excess reactivity...)
 - Safety (decay heat, spent fuel processing, ...)
- Monte Carlo method for the depletion calculation
 - Numerically expensive
 - Time-consuming
 - » Sub-pin tallies (fuel pin should be axially and radially divided for exact evaluation)
 - » At least 3 rings for thermal reactors
 - » Even more than 5 rings for burnable absorbers
 - Large memory requirement
 - » Nuclear data for an amount of isotopes (> 100 isotopes)

Depletion calculation of a nuclear reactor

- Nuclide property changes during a nuclear reactor operation

Coarse mesh finite difference (CMFD) method

- Solving the lower-order diffusion-like equation with the surface current correction
 - Fast and efficient deterministic calculation
 - MC-equivalent accuracy based on the generalized equivalent theory (GET)
- Unavailable to produce the detailed power distribution \rightarrow radial direction : assembly size (~ 20 cm)

Pin-wise CMFD

- Fine mesh grid to generate the detailed pin-wise homogenized power distribution
 - Radial direction : pin size (~ 1 cm)
 - Axial direction : 10 15 cm

KNS Spring Meeting, Online, May 12-14, 2021

Improved Deterministic Truncation of Monte Carlo solution method

- A statistic treatment of deterministic solutions determined by CMFD-assisted MC
 - To accelerate the convergence of the fission source distribution by adjusting particles' weight
 - To provide a subset of solutions to the original MC approach

iDTMC method

- A statistic treatment of deterministic solutions determined by CMFD-assisted MC
 - To accelerate the convergence of the fission source distribution by adjusting particles' weight
 - To provide a subset of solutions to the original MC approach

Depletion calculation of a nuclear reactor

- Eigenvalue calculation with intra pin-level tally calculation
 - → Time-consuming & large memory

KNS Spring Meeting, Online, May 12-14, 2021

iDTMC application in the depletion calculation

- iDTMC method is very efficient for calculation of pin-resolved power distribution

KNS Spring Meeting, Online, May 12-14, 2021

Depletion calculation of a nuclear reactor

Neutron transport equation

$$\hat{\Omega} \cdot \nabla \phi(\vec{r}, E, \hat{\Omega}) + \Sigma_t(\vec{r}, E) \phi(\vec{r}, E, \hat{\Omega}) = \frac{1}{4\pi} S_f(\vec{r}, E) + \int_{\hat{\Omega}'} \int_{E'} \Sigma_s(\vec{r}, E' \to E, \hat{\Omega}' \to \hat{\Omega}) dE' d\hat{\Omega}'$$

Bateman equation

iDTMC application in the depletion calculation

iDTMC method : square-lattice based calculation

iDTMC application in the depletion calculation

Form function (MC)

*Normalized for average to be unity

- Flux distribution (iDTMC)

Total reactor power
$$P = C \cdot \sum_{i} \kappa \Sigma_{f}^{i} \phi_{i}^{DTMC} V_{i}$$
Normalization factor $C = \frac{P \ [MW]}{\sum_{i} \kappa \Sigma_{f}^{i} \phi_{i}^{DTMC} V_{i} \ [MeV]} / 1.602E - 19$ $\phi_{i}^{DTMC'} = C \cdot \phi_{i}^{DTMC}$

iDTMC application in the depletion calculation

Intra-pin power reconstruction

$$ff_{i,r} \times \phi_i^{DTMC'} = \phi_{i,r}$$

APR1400 fuel assembly

- 16 x 16 array (fuel, zoned fuel, burnable absorber, guide tube, instrumentation tube)
- 3 rings per a pin cell
- All reflective BC
- FMFD (iDTMC) mesh : 16 X 16 X 1
- Power : 10 MW

- 10 inactive cycles
- 10 active cycles
- 10,000 histories per cycle

FSD convergence

KNS Spring Meeting, Online, May 12-14, 2021

Pin power distribution

Pin power distribution

Pin power distribution

Pin power distribution

SD of Pin power distribution

SD of Pin power distribution

SD of Pin power distribution

Flux distribution

Flux distribution

Flux distribution

Flux distribution

SD of flux distribution

SD of flux distribution

SD of flux distribution

Average of standard deviation of intra pin power

Cycle	Power		Flux	
	МС	iDTMC	MC	iDTMC
3	0.181	0.013	8.2E+13	1.2E+13
5	0.115	0.010	5.1E+13	9.8E+12
10	0.071	0.008	3.1E+13	6.9E+12

Concluding Remarks

Conclusions

- Intra pin power profile has been generated with MC tallies corrected by iDTMC solutions
- The iDTMC method can provide accurate pin homogenized solutions
- The iDTMC method shows more reliable solutions for both the power and flux distribution compared to the conventional MC method
 - The average standard deviation of the intra pin power distribution was about 10 times smaller in the iDTMC method
 - The average standard deviation of the intra pin flux distribution was about 5 times smaller in the iDTMC method

Future works

Depletion calculation with the pin-reconstruction scheme

Thank you for your attention