Feasibility Study of Fast Neutron Activation Analysis of Iron with LaBr₃:Ce Scintillation Detector

^a HANARO Utilization Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea

^b Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, 16229, Republic of

Korea

*Corresponding author: jgl@kaeri.re.kr

Introduction

- A LaBr₃:Ce scintillation detector has superior characteristic of linearity in the γ-ray energy and good energy resolution about 3% in FWHM for the 661.7-keV γ-ray energy of Cs-137.
- The LaBr₃:Ce scintillation detector has a relatively high intrinsic background radiation due to La-138 and Ac-227.
- For fast neutron activation analysis (FNAA) with the LaBr₃:Ce scintillation detector, the intrinsic background radiation of the detector should be considered.

Materials & Methods

Experimental Setup

Intrinsic background of a LaBr₃:Ce scintillation detector was measured with a high-purity germanium (HPGe) detector as shown in the Fig. 1.
The measurement time was 268,000 s.

Fig. 1. LaBr₃:Ce scintillator and HPGe detector deployment

Results

The peak energies of intrinsic background (γ -ray of 788.7 and 1436 keV) except for the low energy X-ray and α -particles inside the LaBr₃:Ce crystal were verified with the HPGe detector. The peak energies of α -particles are shifted depending on the number of impurities in the LaBr₃:Ce crystal [1].

 An iron sample was irradiated with a Ra-Be neutron source as shown in Fig. 2. The measurement time was 80,000 s.

964.08, 1112.1, and 1408.0 keV) were used to calibrate the detectors.

Fig. 3. The background spectra measured with LaBr₃:Ce and HPGe detectors

The spectrum of the iron sample (blue) shows one singular peak, which did not occur in the spectrum without the iron sample (red) in Fig. 4. This peak was estimated as the γ -ray peak of 1238 keV induced from (n, γ) reaction in ⁵⁶Fe.

Discussion

- One singular peak of 1238 keV showed the feasibility of FNAA of iron.
- The spectra of the irradiated iron sample showed different peaks compared to the intrinsic background in LaBr₃:Ce.
- The intrinsic background of LaBr₃:Ce was negligible in this experiment.
- However, there are some questions remaining :
 - The energy calibration of LaBr₃:Ce is dependent on the temperature so that the calibrated energies are not accurate.
 - Verification of whether other peaks are from HDPE moderator is required.

Conclusions

The intrinsic background of LaBr₃:Ce scintillation detector and the feasibility of FNAA of iron were observed.

For the further quantitative analysis of each γ-ray peaks, the precise neutron spectrum will be studied.

References

[1] Shangqing Sun, etc., Study on the γ+X, γ+β, γ+α coincidence summing effects of the intrinsic background instrument spectrum of a LaBr₃(Ce) scintillation counter, Korean Physical Society, Vol. 77, No. 12, pp. 1091-1099, 2020.

[2] Zeljko Ilic, etc., Prompt gamma rays induced by inelastic scattering of fission neutrons on iron, Radioanalytical and Nuclear Chemistry, Vol. 325, pp. 641-655, 2020.