

Biological dose calculation on duallayered DECT images for CIRT

2021 Spring KNS

Euntaek Yoon, Seongmoon Jung, Jaeman Son, Bitbyeol Kim, Chang Heon Choi, Jung-in Kim, Jong Min Park

xmfla0803@gmail.com Institution of Radiation Medicine Seoul National University Medical Research Center, Republic of Korea

Contents

- I. Introduction
- II. Method
 - Dual energy CT (DECT)
 - Relative Biological Effectiveness calculation
- III. Results
- IV. Discussion & Conclusion

Ion therapy

B. Mustapha, et al. 2016

Proton therapy

Range Uncertainty exists (2012, paganetti)

- Organ motion, setup and anatomical variation, dose calculation approximation, biological consideration

- Range margin : 3.5 % + 1 mm (MGH)

ex) 20 cm range field \rightarrow 8 mm margin

E. Bar, et al. 2017

Carbon ion therapy

Difference with proton therapy

- larger Relative Biological Effectiveness (RBE)

Carbon Ion Treatment planning is based on **biological dose**

For successful carbon ion treatment?

Research purpose

- Calculation of biological dose in CIRT using DECT image using Monte Carlo simulation
- Comparison of DECT-based and SECT-based dose calculation results

DECT vs SECT

* HU : Hounsfield unit, CT number

Dual-layered DECT

Fig. 1. Illustration of five different methods of dual-energy CT data acquisition. 1 = dual tubes with or without beam filtration, 2 = rapid voltage switching with single tube, 3 = dual-layer detector with single tube, 4 = single tube with split filter, 5 = single tube with sequential dual scans

Goo et al, Korean J Radiol, 2017

Philips, IQon spectral CT

Advantages

- Real time
- offers Virtual Monochromatic Image
- Retrospective DECT analysis (offers Z_{eff}, ρ_e)

Disadvantages

- lower sensitivity to optical photon
- cross-talk between the two detector layers

RBE Calculation model

Local Effect Model (LEM)

$$\overline{N(D)} = \int \frac{-\ln S\left(d\left(x, y, z\right)\right)}{V} \mathrm{d}V.$$

Microdosimetric Kinetic model (MKM)

$$\overline{N(D)} = -\ln S = (\alpha_0 + \beta z_{1D}^*)D + \beta D^2$$

Figure 1. Schematic of an incident ion with respect to a cylindrical sensitive volume.

Friedrich, 2013

MKM model

Modified	MKM(mMKM) _{(2010, i}	naniwa)
----------	-------------------------------	---------

$$\overline{N(D)} = -\ln S = (\alpha_0 + \beta z_{1D}^*)D + \beta D^2$$

α₀ = 0.172, β = 0.0615_(constant) **z*_{1D}**: Dose mean saturation corrected <u>specific energy in domain</u>

	Reference	This study
Micro	Track structure model	Monte Carlo simulation (TOPAS , geant4-dna)
Macro	Monte Carlo simulation (Geant4)	Monte Carlo simulation (TOPAS , QGSP_BIC_HP)

Microdosimetric simulation

Figure 1. Schematic of an incident ion with respect to a cylindrical sensitive volume.

Schematic diagram of B.D calculation process

TOPAS simulation

① Abdomen (soft tissue) : pancreas + partial abdomen

Beam

Beam specification : monoenergetic , 180 MeV/u , σ = 3 mm History : 10^5 / Scoring z*1D simultaneously

TOPAS simulation

② Head and Neck (bone) : sternum

Beam specification : monoenergetic , 130 MeV/u , σ = 3 mm History : 10^5 / Scoring z*1D simultaneously

Specific energy (*z**_{1D}**) table**

Analytical model based calculation

Monte carlo calculation

Physical dose distribution

Range(R₈₀) difference : 0.8 mm, 1.1 %

% R₈₀ : depth of the 80% distal end of the Bragg peak maximum

Physical dose distribution

Range(R₈₀) difference : mm

z*_{1D} **distribution**

Common to DECT / SECT

Biological dose distribution

Normalized by biological dose : 4.4 Gy (RBE)

For pancreatic cancer patient, Carbon-ion Radiotherapy, 2014

Normalized physical dose difference : 0.5 %

Biological dose distribution

Normalized by biological dose : Gy (RBE)

For sternum cancer patient, Carbon-ion Radiotherapy, 2014

For head and neck patient

For head and neck patient

Normalized physical dose difference : %

4. Discussion & Conclusion

- By applying DECT, which can reduce the intrinsic uncertainty of SECT-based calculation, DECT-based biological dose calculations for patients were performed through Monte Carlo simulations.
- In addition, SECT-based dose calculation was performed and the results were compared in two patient case.
- In the soft tissue of the abdomen, the range difference was 0.8 mm (1.1 %) and in the H&N patients containing bone, the range was xx mm (yy %).
- The difference between the physical dose at the target internal point was calculated based on the DECT and SECT-based biological dose calculation results, and it was found to be 0.5% in soft tissue and zz% in tissue containing bone.
- If DECT is used in place of SECT through further verification, it is expected that correction of the range uncertainty will be greater in the area containing bone than in the area containing a lot of soft tissue.

Thank you for attention