

Gamma-ray Source Detection with Coded-aperture Gamma Imager in a Complex Gamma-ray/Neutron Environment for Nuclear Safeguard

Jihwan Boo, Seoryung Park, Suyeon Hyeon, Manhee Jeong*

Dept. of Nuclear & Energy, Jeju National University

May. 13th 2021

Radiation Measurement Lab. Dept. of Nuclear & Energy Jeju National University

Introduction

Mixed gamma/neutron environments due to a severe nuclear accident

Fukushima: ten years on from the disaster

https://theconversation.com/fukushima-ten-years-on-from-the-disaster-was-japans-response-right-156554 (accessed May 2021).

Hore-Lacy, Ian. *Nuclear Energy in the 21st Century: World Nuclear University Press*. Elsevier, 2010.

• 240 Pu (S.F) -> 151 Eu (n, γ) 152 Eu

• $^{137}Cs \xrightarrow{\beta} ^{137m}Ba \xrightarrow{\gamma} ^{137}Ba \xrightarrow{60}Co$

-> 59 Co (n, γ) 60 Co

¹³⁷Cs 30.08

¹⁵²Eu

EPSILON-G

(Energetic Particle Sensor for the Identification and Localization of Originating Nuclei)

Specification

Technology	Coded-aperture	
Field-of-view	45°	
Energy Range	30 keV – 3 MeV	
Energy Resolution	8% @ 662keV	
Sensitivity	<2 sec. for 0.3 μSv/hr of ¹³⁷ Cs	
Dose rate range	0.08 μSv/hr (BKG) to 20 μSv/hr	
Operational temperature range	-20°C to 60°C	
Size (weight)	104 x 144 x 197 mm (5.1 kg)	

Neutron total cross sections of ⁶Li isotope and of natural mixture of Gd isotopes

 $GAGG(Ce) \Leftrightarrow Gd_3Al_2Ga_3O_{12}(Ce)$

M. Korzhik, et al. "Ce-doped $Gd_3Al_2Ga_3O_{12}$ scintillator for compact, effective and high time resolution detector of the fast neutrons." arXiv preprint arXiv:1807.06390 (2018).

Table 1. Primary gamma-rays produced

by

Methods

Neutron total cross sections of ⁶Li isotope and of natural mixture of Gd isotopes

		rov [ko]	7]	Intensity %			
	Primary	Secon	ndarv	$[10^{-2}]$			
1	8448	_	_	1.8 ± 0.2			
			7000	1154	_	12.7 ± 1.4	
2	7382	1065	_	10.6 ± 1.2			
		1158	_	34.8 ± 2.4	16		
3	(288	959	199	10.5 ± 1.1			
4	6474	1964	_	35.2 ± 0.7			
5	6420	2017	_	20.7 ± 2.2	cro		
	6430	1818	199	11.7 ± 1.5	оху		
6	6348	2188	_	12.1 ± 1.7	(19		
		2097	199	9.8 ± 1.6			
		1036	1154	4.6 ± 0.8			
		1030	1065	3.8 ± 0.7			
7	6319	2127	_	9.4 ± 0.5			
8	6034	2412	—	14.0 ± 1.7			
0	0034	2213	199	6.4 ± 1.0			
0	0	5885	2563	_	9.0 ± 2.1		
3	0000	2364	199	8.4 ± 2.1			
10	5779	2672	_	18.8 ± 0.8	T. Ta		
11	5698	2749	_	28.6 ± 0.8	natur		
12	5661	2786	_	15.4 ± 0.7	Evno		

Nuclear react ions	E _γ [keV]	Cross section (b)
$^{16}O(n, n'\gamma)^{16}O$	6,130	0.003- 0.023

C. Nordborg, *et al.* "Gamma-ray production cross sections of neutron-induced reactions in oxygen." *Nuclear Science and Engineering* 66.1 (1978): 75-83.

T. Tanaka, *et al.* "Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium." *Progress of Theoretical and Experimental Physics* 2020.4 (2020): 043D02.

 $GAGG(Ce) \Leftrightarrow Gd_3Al_2Ga_3O_{12}(Ce)$

Neutron total cross sections of natural mixture of tungsten(W) and lead(Pb)

MURA mask

Neutron total cross sections of natural mixture of tungsten(W) and lead(Pb)

Table 2. Primary gamma-rays produced by ${}^{A}W(n, \gamma){}^{A+1}W$

Compound	$E_{\gamma} \; [\text{keV}]$	
$^{187}\mathrm{W}$	77.39(3)	
$^{187}\mathrm{W}$	145.79(3)	
$^{187}\mathrm{W}$	273.10(5)	
$^{187}\mathrm{W}$	5261.68(6)	
^{183}W	6190.78(3)	

Hurst, A. M., et al. "Investigation of the tungsten isot opes via thermal neutron capture." *Physical Review C* 89.1 (2014): 014606.

G. Henning, *et al.* "Measurement of (n, xnγ) reaction cross sections in W isotopes." *EPJ Web* of *Conferences*. Vol. 146. EDP Sciences, 2017.

Table 3. Primary gamma-rays produced by ${}^{A}W(n, n'\gamma){}^{A}W$

Compound	$d = E_{\gamma} [keV]$
	100
182337	229
	1121
	1221
	111
^{184}W	253
	792
	903
	112
¹⁸⁶ W	274
	615
	738

Nuclear & Energy Jeju National University

Methods

	²³⁹ PuBe	²⁴¹ AmLi	²⁵² Cf
Half-life	$2.4 \times 10^{30} \mathrm{yr}$	432 yr	2.65 yr
Decay mode(s)	${}^{9}\text{Be}(\alpha, n){}^{12}\text{C}$	$^{7}\text{Li}(\alpha, n)^{10}\text{B}$	α (96.9%) SF (3.09%)
Neutron Energy	0.5 - 11.5 MeV E _{ave} : 4.4 MeV	0.02 - 2 MeV E _{ave} : 0.54 MeV	0.2 - 7 MeV E _{ave} : 2.13 MeV
Average # emitted neutrons	1.7 × 10 ⁶ n/s-Ci	60,000 n/s-Ci	3.757 per SF
Gamma-ray Energy	4.4 MeV	59.5 keV 102.97 keV (NpK _{α1} : 101.66 keV)	0.14 - 10 MeV E _{ave} : 0.8 MeV

²³⁹PuBe (1.7×10⁶ n/s)

- Experiment Condition
- Source to detector distance: 1 m
- Initial source activity: 1 Ci
 (Sep, 30th, 1963)

Nuclear & Energy Jeju National University

$^{252}Cf (5.37 \times 10^{6} \text{ n/s})$

- Experiment Condition
- Source to detector distance: 2 m
- Initial source activity: 5.63 mCi (May, 8th, 2015)

Nuclear & Energy Jeju National University

²⁴¹AmLi (5.57 × 10⁵ n/s)

- Experiment Condition
- Source to detector distance: 2 m
- Initial source activity: 9.3 Ci
 (Dec, 10th, 2019)

Real-time imaging of Epsilon-G

PuBe neutron source

AmLi neutron source

D-D neutron generator (2×10^6 n/s)

NE

JEJU

- Source to detector distance: 2 m
- Fusion reaction: D(d, n)³He (or D-D) (neutron energy about 2.4 MeV)

Nuclear & Energy Jeju National University

D-D neutron generator (2×10^6 n/s)

Gamma-ray detection in mixed gamma/neutron environments

- ✓ Can provide a radionuclide distribution map in mixed gamma/neutron environments
- \checkmark Can maintain the gamma spectroscopy

Future works

- ✓ Application of an unmanned robotic system with Epsilon-G in an area monitoring
- ✓ Utilization of a Epsilon-D to verify the presence of gamma/neutron sources

Gamma-ray Source Detection with Coded-aperture Gamma Imager in a Complex Gamma-ray/Neutron Environment for Nuclear Safeguard

Thank you for your attention!

Radiation Measurement Lab. Dept. of Nuclear & Energy Jeju National University

Counts

Application of Epsilon-G

Application of Epsilon-G

Illustration of use examples of an unmanned ground vehicle

Specification

Dimensions (W x H x D)	1023 mm × 780 mm × 900 mm	
Vehicle Weight	130 kg	
Battery	48V/30Ah	
Max Travel (w/o loading)	10 km	
Climbing Capacity	36° Can Climb Stairs	
Horizontal Rotation Capacity	360°	
Vertical Tilt Capacity of a Motor	± 30°	