2021.05.13, KNS, online

Verification study of the dose calculation algorithm for carbon beam therapy based on dual energy CT image and LEM IV biological model

Wook-Geun Shin^{1,2}, Euntaek Yoon³, Bitbyeol Kim^{1,3}, Seongmoon Jung^{1,2,3}, Jaeman Son^{1,2,3}, Jong Min Park^{1,2,3}, Jung-in Kim^{1,2,3}, Chang Heon Choi^{1,2,3,*}

¹Department of Radiation Oncology, Seoul National University Hospital, 03080 Seoul, Korea ²Biomedical Research Institute, Seoul National University Hospital, 03080 Seoul, Korea ³Institute of Radiation Medicine, Seoul National University Medical Research Center, 03080, Korea *corresponding author: dm140@naver.com

Characteristic of particle beam therapy

PTCOG, Particle Therapy Patient Statistics

- High conformal dose to the target volume using Bragg peak
- Range uncertainties due to the setup error, dose calculation algorithm, CT calibration ...

Pencil beam based dose calculation algorithm

 $t_w = t_m (\rho_m / \rho_w) (\overline{S}_m / \overline{S}_w)$

- Water equivalent thickness (WET)
- Relative stopping power (RSP)

Conventional method using Computed Tomography (CT)

Source of range uncertainty in the patient	Range uncertainty
Independent of dose calculation	
Measurement uncertainty in water for commissioning	$\pm 0.3 \text{ mm}$
Compensator design	$\pm 0.2 \text{ mm}$
Beam reproducibility	$\pm 0.2 \text{ mm}$
Patient setup	$\pm 0.7 \text{ mm}$
Dose calculation	
Biology (always positive) ^	$+\sim 0.8\%$
CT imaging and calibration	$\pm 0.5\%^{a}$
CT conversion to tissue (excluding I-values)	$\pm 0.5\%^{b}$
CT grid size	$\pm 0.3\%^{\circ}$
Mean excitation energy (I-values) in tissues	$\pm 1.5\%^{d}$
Range degradation; complex inhomogeneities	$-0.7\%^{e}$
Range degradation; local lateral inhomogeneities *	$\pm 2.5\%^{ m f}$
Total (excluding *, ^)	2.7% + 1.2 mm
Total (excluding [^])	4.6% + 1.2 mm

Paganetti et al. (2012)

- CT Hounsfield unit (HU)
 - Weak correlation with RSP

RSP calibration using dual energy CT (DECT)

Mixed 100/140 kVP

Perfusion blood volume

Charlie, rID: 31363

- Pros •
 - Material decomposition (Z_{eff} and ρ_e)
 - Close correlation with RSP
- Cons ٠
 - Extra imaging dose

Patino et al. (2016)

Purpose

- The purpose of this study is to develop a carbon dose calculation algorithm based on the DECT images using Philips iQon duallayer CT
- To quantitatively evaluate the influence of the DECT by comparing with conventional CT on pencil beam dose calculation

Carbon beam data calculated by Geant4

- QGSP_BIC_HP_EMY modular physics
- 100-430 MeV/u (5 MeV/u energy bin)

Philips iQon dual-layer CT and material decomposition

matRad software

- MATLAB-based treatment planning system
- Dose calculation algorithm for photon and particle beam
- Biological dose calculation based on LEM IV model

Influence of DECT on patient cases

• Total 3 patient cases

– Abdomen, Lung, Head&neck cases

- Treatment plan
 - Single port
 - Same plan for both SECT and DECT image
- Biological dose and range uncertainty

Abdomen case

- Maximum RSP difference of 10% in kidneys and stomach
- Range uncertainty up to 2.02 mm

- Relatively large RSP disagreement at lung vessel (about 20%)
- Range uncertainty up to 2.25 mm

Head & neck case

- Beam hardening and photon starvation artifact
- Range uncertainty up to 1.15 mm

Conclusions

- The plausibility of the dose calculation algorithm based on DECT image has been verified in this study.
- DECT could be used to correct up to 2.25 mm range uncertainty due to the CT conversion method of conventional CT.
- In further, quantitative evaluation of the DECT influence according to beam path media will be performed, and postprocessing algorithms for beam hardening artifact would be investigated.

Thank you for listening

