Application of Kernel-Convolution Method for Photon Dose Estimation in BNCT

Chang-Min Lee^a, Hee-Seock Lee^{a,b*}

^aDivision of Advanced Nuclear Engineering, POSTECH, Pohang 37673, Republic of Korea ^bPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea *Corresponding author: lee@postech.ac.kr

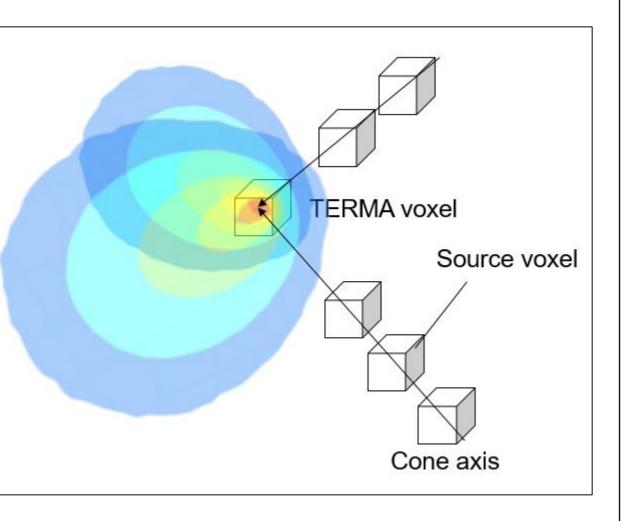
Introduction

- Purpose of this work is to reduce the BNCT dose calculation time
- This method using FLUKA Monte Carlo code to calculate neutron flux distribution, collapsed cone convolution (CCC) to calculate photon dose from neutron flux [1][2].
- Since proton and ion have extremely small range, dose from these particles can be calculated by multiplication of neutron flux and reaction rate.

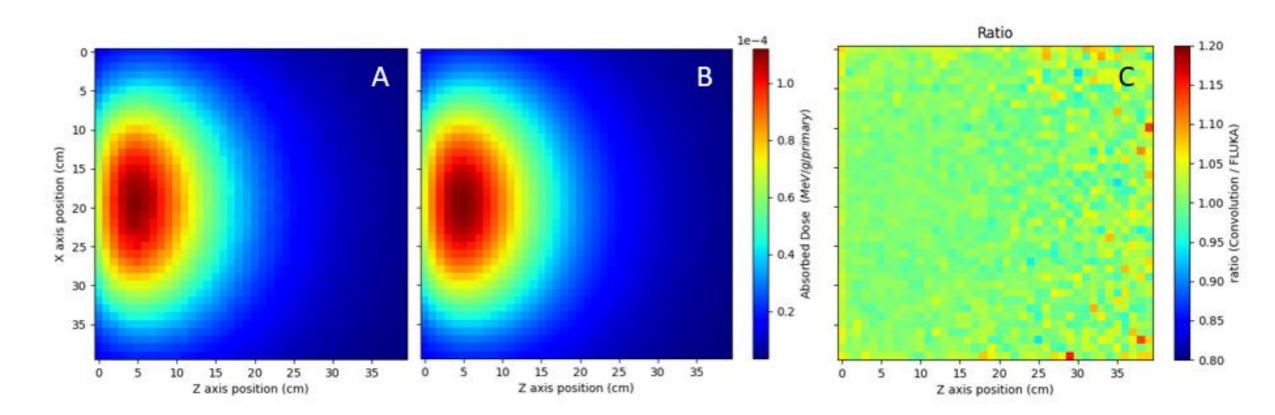
Results

- Both case used FIR-1 research reactor BNCT module neutron spectrum. Beam shape is circular and diameter is 12 cm.
- Both case use hounsfield to material composition table from Schneider et. al. (2000) [4]. Uniformly distributed Boron-10 that has 13 ppm concentration is added.
- Voxel size is $0.5 \times 0.5 \times 0.5 \text{ cm}^3$

We have compare the result of pure FLUKA calculation and this method. The performance of this method also be compared.


Methods

- This work using modified brachytherapy CCC [2].
- Brachytherapy has finite number of gamma source. However, number of BNCT gammas source is the same as the number of voxel.
- Therefore, our modified algorithm follow two steps.


A. Kernel summation

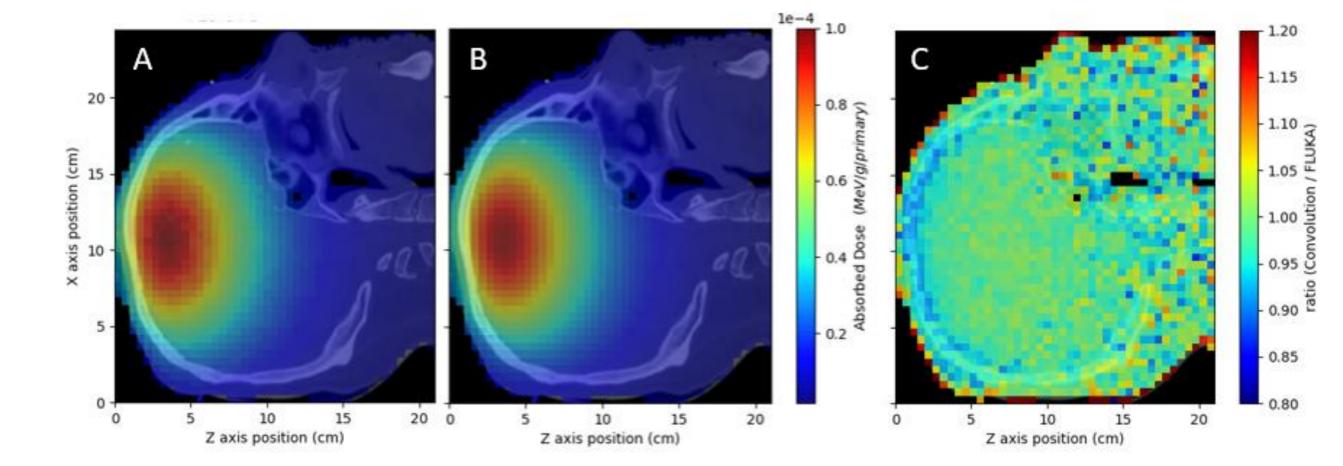
- 1. Using fixed cone axis that generated by Young-Fibonacci lattice algorithm [3].
- 2. All gamma sources are isotropic.
- 3. Calculate effective intensity of every voxel that passing through same cone axis. Consider mass attenuation.
- 4. Sum kernel for every cone axis.

B. Kernel summation

20x20x20 cm³ water phantom

	Pure FLUKA	This Work
Uncertainty	2.009%	2.700%
# of histories	1.2x10 ⁹	7.2x10 ⁷
Calculation times	20640 seconds	956 seconds
(FLUKA)		
Voxel build	-	7.6 seconds
Kernel convolution	-	218.5 seconds
Total time	20640 seconds	1182.3 seconds

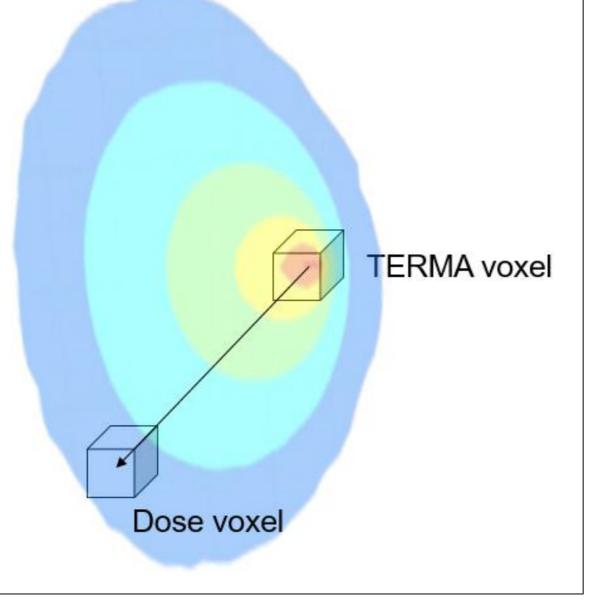
- The uncertainty of FLUKA means average statistical uncertainty of photon dose. Uncertainty of this work means average statistical uncertainty of neutron flux.
- kernel convolution is deterministic method, Since uncertainty of neutron flux propagate to final result.


- 1. Perform a conventional collapsed cone convolution
- This method can reduce the time complexity.
- Conventional brachytherapy CCC has M² x N² time complexity for a single source, total is $M^2 \times N^{5}$.
- This method has M x N time complexity for a single source and there is two steps, total is $M \times N^{4}$.

*M is number of cone axis, N is number of voxels on one side

Summary and Future Plan

- Brachytherapy collapsed cone convolution is modified and applied to BNCT dose calculation.
- The difference between FLUKA and convolution is large at the



(A) FLUKA photon dose (B) kernel-convolution photon dose (C) ratio of convolution/FLUKA

	FLUKA	Convolution
Uncertainty	3.479%	3.859%
# of histories	6x10 ⁸	3.6x10 ⁷
Calculation times	35820 seconds	2130 seconds
(FLUKA)		
Voxel build	-	15 seconds
Kernel convolution	-	300 seconds
Total time	35820 seconds	2445 seconds

References

surface and bone.

- Average relative difference between FLUKA and convolution code is 2.07% in the case of water phantom and 3.91% in the case of head CT voxel model.
- **GPU-accelerated neutron flux Monte Carlo code that can** substitute FLUKA will be combined.
- Full package that can calculate every dose component will be developed.

[1] T.T. Bohlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, and V. Vlachoudis, "The FLUKA Code: Developments and Challenges for High Energy and Medical Applications", Nuclear Data Sheets 120, 211-214 (2014). [2] Carlsson, Åsa K., and Anders Ahnesjö. "The collapsed cone superposition algorithm applied to scatter dose calculations in brachytherapy." Medical physics 27.10 (2000): 2320-2332. [3] González, Álvaro. "Measurement of areas on a sphere using Fibonacci and latitudelongitude lattices." Mathematical Geosciences 42.1 (2010): 49-64. [4] Schneider, Wilfried, Thomas Bortfeld, and Wolfgang Schlegel. "Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions." Physics in Medicine & Biology 45.2 (2000): 459.

