

Beam Wobbler using Halbach Dipole Magnets for RI Production Beamline @ KOMAC

RI production target

Only <100 cm long, <50 cm wide wobbler is accessible

Absolutely out of space

[kG]

lagnetic

Halbach Dipole Magnet : consisting of small permanent magnets, outer magnetic field is almost zero.

Magnetic field measurement on axis

(1.5 cm radius)

Preventing target damage by high power proton beam and Improving utilization of target are important.

Using wobbler,

- Reduce peak power
- Improve uniformity
- Minimize beam loss
- \Rightarrow Wobbler should be installed in target room
- \Rightarrow Electromagnet wobbler is impossible
- ... Need a wobbler with rotating permanent magnets
 - And as simple as possible considering installation, radiation environment, and maintenance

Halbach Dipole Magnet to be used

Distance [mm] $B \cdot L = 0.0689 \text{ T} \cdot \text{m}$ \Rightarrow 2.7° bending for 100-MeV proton \Rightarrow If proton moves forward 150 mm, it moves 7 mm in transverse.

Fabrication of Beam Wobbler

hour operation test @180 rpm

- no big problem overall
- slight temperature increase of beam pipe due to eddy current : No problem vibrations of less than 1 mm
- amplitude : analysis required

Fabrication drawing

Measured magnetic field of wobbler magnets @ central axis

Wobbler under factory test

Analysis of Vibration Effect

Vibration modes of wobbler magnet

(a)

Oscillating globally around center axis : no effect on beam because magnetic field located 1 mm away from axis differs little from central magnetic field

• Parallel magnetic field does not affect beam

- Decrease in perpendicular magnetic field is about 0.5% (= 1/200, assuming that the length of the wobbler magnet is 400 mm)
- It is small enough to be negligible given that the distance from the wobbler to the target is within 1 m.

Oscillating center of left and right sides with a 180 degree phase difference : magnetic field component perpendicular to beam decreases due to the magnetic field tilted in the beam direction, and instead magnetic field parallel to beam is generated

Status and Future Plan

Beam wobbler waiting installation

• Wobbler required to reduce peak power and improve uniformity on RI targets

- Due to space limitations, Halbach magnets wobbler to be installed in the target room
- According to design, wobbler fabrication completed
- Off-line test operation completed and performance verified
- Vibration of wobbler magnet was found during the test, but it is expected that there will be no problems as a result of the analysis.
- Beam wobbler waiting for installation at target room shielding door
- Plan to install wobbler for future experiments irradiating high power beams to targets