Natural convection heat transfer of two heating spheres with pitch-to-diameter ratio

Seong-Il Beak, Je-Young Moon, Dong-Ho Shin and Bum-Jin Chung*

Presenter : Seong-Il Beak

Kyung Hee University

KNS Spring Meeting May 12-14, 2021 Department of Nuclear Engineering Kyung Hee University

Introduction

• Applications of packed bed

- Pebble fuel of nuclear reactors, thermal energy storage, catalytic reactors, heat exchanger, etc.
- The investigation on the interaction between adjacent spheres in the packed bed for natural convective flow is needed.

• In this study,

- Measurement of natural convection heat transfer of two heating spheres with different arrangement.
- ➢ Visualization experiment of plating patterns appearing on two spheres.

Department of Nuclear Engineering

Kyung Hee University

Natural convection of a single heating sphere

Natural convection on a sphere [Lee et al., 2017]

- Natural convection of a single heating sphere
 - The buoyant flow starts at the bottom along the surface of the sphere.
 - \succ It separates the plume from the upper part of the sphere.
- For small Ra_d
 - > For low Ra_d , the laminar boundary layer is formed.
 - \blacktriangleright The plume rises from the uppermost part
- For large Ra_d
 - > For high Ra_d , the transition to turbulence occurs.
 - The plume rises from at the upper part of the sphere which is relatively lower.
 - \blacktriangleright Critical $Ra_d = 3 \times 10^8$

Experimental Methodology

• Analogy between heat transfer and mass transfer

Heat transfer	Mass transfer	Heat transfer		Mass transfer	
$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$		Nu	$\frac{hd}{k}$	Sh	$rac{h_m d}{D_m}$
$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + X$		Pr	$\frac{v}{\alpha}$	Sc	$\frac{V}{D_m}$
$\frac{DT}{Dt} = \alpha \nabla^2 T$	$\frac{DC}{Dt} = D\nabla^2 C$	Ra	$\frac{g\beta\Delta Td^3}{\alpha v}$	Ra	$\frac{gd^3}{D_m v} \frac{\Delta \rho}{\rho}$

[Governing equations]

[Dimensionless numbers]

Copper electroplating system

• Mass transfer in a cupric acid-copper sulfate

1. Electric migration $(N_m) \longrightarrow$ not in heat transfer system (H₂SO₄) 2. Diffusion (N_d) 3. Convection $(N_c) \longrightarrow N_t - N_m = N_d + N_c = \frac{(1 - t_n)I_{lim}}{nF} = h_m(C_b - C_s)$

KNS Spring Meeting May 12-14, 2021

Test matrix

Test matrix

Se	<i>d</i> (mm)	Ra _d	Position		
50			P_h/d	P_{v}/d	
2,014	6, 15.8, 25	$1.83 \times 10^{7},$ $3.35 \times 10^{8},$ 1.33×10^{9}	0	1.06, 1.5, 2, 3, 5, 7	
			0.47	1.06, 1.5, 2, 3, 5, 7	
			0.76	1.06, 1.5, 2	
			1.06	1.06, 1.5, 2	

 P_h/d : Horizontal pitch-to-diameter P_v/d : Vertical pitch-to-diameter

Arrangement of two spheres

Varying P_h/d

 $P_h/d = 0$

 $P_h/d = 0.47$

 $P_{h}/d = 0.76$

6

KNS Spring Meeting May 12-14, 2021

Experimental setup

Results : Single sphere

Comparison of experimental results with existing correlation

- The experimental results were compared with correlation of Churchill (1983).
 - \blacktriangleright Average error = 2.7 %

Results : Two inline spheres

- The heat transfer of the upper sphere was declined by the decrease of the P_{v}/d .
 - > This is due to preheating effect and stagnant flow effect.
 - → Up to $P_v/d = 3$ (6 mm, 15.8 mm), up to 2 (25 mm).

Results : Two staggered spheres

- For $P_h/d = 0.47$, the heat transfer of the upper sphere is higher than the lower sphere
 - > This is due to side flow effect.
 - → Up to $P_v/d = 2$ (6 mm), up to $P_v/d = 3$ (15.8 mm), up to $P_v/d = 5$ (25 mm).

Results : Plating patterns appearing on lower sphere

 $Ra_d = 1.33 \times 10^9$

Lower sphere

 $Ra_d = 1.35 \times 10^9$

Single sphere [Lee et al., 2017]

• The plating patterns of the lower sphere was the same as that of a single sphere.

KNS Spring Meeting May 12-14, 2021

Results : Plating patterns appearing on upper sphere

 $P_v/d = 1.06$, upper sphere ($Ra_d = 1.33 \times 10^9$)

- At $P_h/d = 0$, the upper sphere was influenced by stagnant flow.
- At $P_h/d = 0.47$, the upper sphere was affected by side flow.

Conclusions and further studies

Conclusion

- Natural convection heat transfer of two spheres with various pitch-to-diameter was performed using mass transfer experiment.
 - ➤ Two inline spheres
 - ✓ When P_{v}/d is small, the heat transfer of the upper sphere was declined due to preheating effect and stagnant flow effect.
 - > Two staggered spheres
 - ✓ As P_h/d increases, side flow effect occurred and heat transfer of the upper sphere increased.

Further studies

- Experiments for extended test matrix
 - Sphere diameter corresponding to turbulent flow regime ($Ra_d > 1.83 \times 10^9$)
- Analysis of the geometrical effect for the influence of pitch-to-diameter on natural convection heat transfer
 - ➢ 2D (Two cylinders) vs. 3D (Two spheres)

Thank you for attention.

