Experimental study of Condensation Heat Transfer Performance on an outer Super-hydrophobic tube with various materials

Min-Hyeong Lee^a, Hong-Ik Lee^a, Eon-Jong Jung^a, Kwon-Yeong Lee^{a*}

^aDepartment of Mechanical and Control Engineering, Handong Global University, Pohang, Korea **Corresponding author: kylee@handong.edu*

1. Background

Condensation

Condensation is a natural phenomenon happening when steam hits on a cold plate. It is a widely applied phenomenon in order to cool down heated fluid in various fields of industry such as power plants or boilers. Improvement on condensing efficiency is a direct factor on energy efficiency.

Type of condensation

Strategy

Dropwise condensation

Filmwise condensation

Water film works as heat resistance which reduces heat transfer \bullet efficiency. *How to maintain dropwise condensation?*

2. Problem

S.A.M (Self Assembled Monolayer)

Bare Surface

Super-hydrophobic surface

- Figures above show how Micro-Nano structure is formed on the • Bare Aluminum plate → **S.A.M coating method**
- S.A.M coated surface makes a large contact angle in which makes the detachment of droplets to occur more readily.
- Super-hydrophobic surface techniques for various materials should ulletbe developed considering various industrial fields for application
- The condensation performance of such super-hydrophobic surface

Result of Previous study

5. Result

Test Matrix

Coolant flow rate	Reynolds number	Reynolds number
Saturation pressure	10,000	20,000
0.2 bar	Condition #1	-
0.4 bar	Condition #2	Condition #5
0.6 bar	Condition #3	Condition #4

Enhancement & Conclusion

techniques should be evaluated thoroughly.

3. Experiment

Experimental facility

Chamber

Visible acrylic plate

Thermocouple

- At Condition #1, the highest enhancement is shown for all materials. (71 ~ 230[%])
- From Condition #2 to #4, the enhancement is getting reduced compared to that of Condition #1 for all materials. $(37 \sim 117[\%])$
- At Condition #5, overall heat transfer coefficient decreased drastically due to the effect of attached condensation, resulting almost no enhancement for all materials of S.A.M coated tube.

 \rightarrow S.A.M Coating can be said to be effective only in Condition #1, #2, and #3 which is considered to be actual condition for an industrial condenser in power plant.