

Applying Mobile Equipment Usage to PRA Models (HRA)

Prepared by Jung-Min Kim

ssesse78@gmail.com

1

Contents

Introduction

- Mobile Equipment PRA Modeling and Challenges
- Proposed Solution for Challenges
- Compare with existing PRA results
- Apply to Mobile Equipment HRA
- Conclusion

Introduction

- Many nuclear power plants are introducing mobile equipment utilization strategies to cope with severe accidents
- Nuclear power plants also conduct Probabilistic Risk Assessments (PRA) to analyze events that could cause core damage
- Several challenges have been found to apply the newly introduced mobile equipment to PRA
- This poster reviews the proposed solutions and provide additional considerations

Mobile Equipment PRA Modeling and Challenges(1/2)

 PRA Technical Elements for Internal Event (ASME/ANS RA-Sa-2009) Initiating Event Analysis (IE) Accident Sequence Analysis (AS) • Success Criteria (SC) • Systems Analysis (SY) • Human Reliability Analysis (HR) • Data Analysis (DA) \circ Quantification (QU) ○ LERF Analysis (LE)

Mobile Equipment PRA Modeling and Challenges(2/2)

- In most cases, the method of modeling mobile equipment in the PRA is similar to the modeling of existing installed equipment
 - Accident Sequence Analysis (AS), Success Criteria (SC), Systems Analysis (SY), Quantification (QU), LERF Analysis (LE)
- Several challenges have been identified
 - \odot Data Analysis (DA)
 - Sufficient industrial data have not been collected to estimate the failure rate for NPP mobile equipment
 - o Human Reliability Analysis (HR)
 - Typical HRA methodology of PRA is not designed to address many of the human behaviors needed for mobile equipment

* Reference : EPRI 3002003151 Incorporating Flexible Mitigation Strategies into PRA Model

Proposed Solution for Challenges (1/4)

• Data Analysis (DA)

 The failure rate of mobile equipment in NPP can be estimated by comparing the failure rate of permanently installed NPP equipment with the failure rate of the potable/permanent military equipment

 Portable military component failure rates are generally higher than permanent component failure rates, but it is less than 10 times

• Data Analysis (DA) (Cont.)

 Based on engineering judgment, the failure rate can be assumed by considering the weight of the failure rate of the permanent installation equipment of similar functions

 \odot Failure rate of Permanent equipment : NUREG/CR-6928

- $\,\circ\,$ Deployment Factor : 1 ~ 10
- \circ Location Factor : 1 ~ 4
- $\,\circ\,$ Water Quality Factor : 1 ~ 10
- \odot Test/Maintenance Factor : 1 ~ 2

Proposed Solution for Challenges (3/4)

- Human Reliability Analysis (HR)
 - $\circ \text{Cognition}$
 - \odot The cognition for deployment of mobile pumps and generators is determined by the cognition that declares ELAP
 - After declaring ELAP, no significant additional decisions are required for operators to deploy portable equipment

FLEX HRA

Proposed Solution for Challenges (4/4)

- Human Reliability Analysis (HR) (Cont.)
 - \circ Execution (THERP method)
 - $\,\circ\,$ The operating action is not covered by THERP
 - Use of Supplemental Data
 - Select THERP surrogate value using engineering judgment
 - Choosing the Connecting point \rightarrow Local valve selection error (T 20-13)
 - Connecting Temporary Hoses \rightarrow Connector mating error (T 20-12 (13))
 - Operability check of portable pump \rightarrow Checker fails to detect errors (T 20-22)
 - $\,\circ\,$ Too many steps
 - Define the critical tasks at a level and Action Decomposition
 - Recovery modeling

* Reference : EPRI-3002013018 HRA for Diverse and FLEX and Use of Portable Equipment

Compare with existing PRA results (1/5)

- Comparison of proposed HRA solutions for mobile equipment with existing HRA
- Comparison
 - \odot Existing Internal Event Activity : Open ADVs Using Hand Wheel
 - Description : After reactor trip, operator should control and maintain SG pressure within post-trip SG pressure control band. it is assumed that TBVs and the remote control of ADVs are not available conservatively. Thus operator controls SG pressure with ADVs in local.
 - Reason for Selection : This action is similar to the deployment and implement of mobile equipment (Not controllable in MCR and requires field operation)

Mobile Equipment Strategy Activity : Portable Pump Deploy and Implement

- Description : transporting the FLEX pump to the staging area, connecting hoses between the source tank and the FLEX pump suction point, and connecting hoses between the FLEX pump discharge point and RHR "A" piping interface point.
- Reference : EPRI-3002013018, Appendix C and E

Compare with existing PRA results (2/5)

• Existing Internal Event Activity : Fails to Open ADVs Using Hand Wheel

Unit	Method	Cognition	Action type	Stress	Place	Procedure	Recovery
Shin-Kori 3&4	THERP	Time : 20m	Dynamic	МН	Local	good	Checker Fail Error (T 20-22)
Shin-Kori 1&2	K-HRA	Time : 29m Interest Action : yes HMI : Mid Procedure : high Training : Mid Burden : 1.0	 Step by Step Complexity : if-then Procedure : high Enough Time & Familiar : No 	 EH Time : < Severity Step Ris Local Training 	60m : Yes k : : Low		Time : <60m HMI : Low Supervisor : Yes
NPP ONE	CBDTM, THERP (HRA calculator)	 Pcd + Pce + Pcg Information misleading Skip a step in procedure Misinterpret decision logic 	High (x5) - PSF : Negative (Tools required - Workload : High * Crew Experience : Experienced		Non MCR		N/A

Compare with existing PRA results (3/5)

• Existing Internal Event Activity : Fails to Open ADVs Using Hand Wheel

Unit	Method	Remark
Shin-Kori 3&4	THERP	Good Procedure and not trained / Harsh Environment \rightarrow Dynamic and stress
Shin-Kori 1&2	K-HRA	 HMI (cognition) : No alarm, Performed by procedure → Mid Training (cognition) : 0.5/year simulator training → Mid Training (execution) : Lack of hands-on practice → Low HMI (execution) : Unable to verify action results in the local → Low
NPP ONE	CBDTM, THERP (HRA calculator)	 Cognition : The EOG provides contingency actions which are instructions on how to proceed if the cue states are not as stated → Pcd (b) Stress : This operator action is performed in local. It is expected that this operator action is simple and has not enough time to complete and work environment is not good → High (x5)

Compare with existing PRA results (4/5)

• Mobile Equipment : Portable Pump Deploy and Implement

Action	Method	Cognition	Action type	Stress	Place	Recovery	Total HEP
Deploy Portable Pump	CBDTM, THERP (HRA calculator)	 Pcb + Pce + Pcg Failure of Attention Skip a step in procedure Misinterpret decision logic (Cognition error is modeled in the ELAP Declaration : 2.7E-03) 	 Moderate (x2) PSF : Negative (portable lighting) Workload : low * Crew Experience : Experienced 		Non MCR	Checker Fail Error (T 20-22)	3.2E-02
Implement Portable Pump			Moderate (x2) - PSF : Negative (porta- lighting) - Workload : low * Crew Experience : Exp	able perienced	Non MCR	Check reading display Error (T 20-11)	1.5E-04

(EPRI-3002013018 example)

Compare with existing PRA results (5/5)

• Comparison Results

- Operator fails to ADV open using hand-wheel (KHNP PSA result) : PSF and stress factor are high due to the insufficient field practice and local activity
- Operator fails to deploy/implement portable pump (EPRI example) : STRESS factor is relatively low on the assumption that there was sufficient time available and the number of people required to install mobile pumps was also trained once every two years

	ADV open using	HW error	EPRI example	
	Shin Kori 3&4	Shin Kori 1&2	NPP ONE	: Pump Deploy/Implement
STRESS factor (Multiplication)	X 10	X 10	X 5	X 2

Apply to Mobile Equipment HRA (1/4)

- Activity : Mobile Generator Deployment and Implement
- HRA method : CBDTM + THERP
- Procedure progress scenario
 - \odot EOP-09 : EALP Declaration
 - \odot MOG-05 : Site-Status Assessment and Mobile Equipment Deployment
 - \odot OP-3593-01 : Operation of the Mobile Generator
- Assumption

○ Scenario and Time Window : Tsw = 8hr, Td = 10m, Tcog = 20m, Texe = 2hr

- Manpower Requirement
 - In the early stages of ELAP, the deployment of mobile equipment is carried out simultaneously and the manpower is limited
 - Field operator : 2 (valve manipulation, Mobile Equipment control)
 - Contractor Worker : 15 (electric cable/fuel hose deployment, driving a trailer)

Apply to Mobile Equipment HRA (2/4)

• Assumption (Cont.)

 \odot All debris on the path has been removed, the HEP for moving is not considered \odot Non-essential load shedding HEP assessment is not considered

• Multiplier Factor

	Plant Response as Expected	Workload	PSF	Crew Experience	STRESS factor
Deployment	Yes	HighNegat(Simultaneous(potalinstallation ofLightinmany mobile	Negative (potable Lighting)	Novice (Contract worker)	X 10
Implement				Experience (Shift field Operator)	X 5

Apply to Mobile Equipment HRA (3/4)

Execution Unrecovered								
Procedure Comment								
	Instruction	THERP				Stress	Override	
Step No.	/ Comment	Error Type	Table Item		HEP	Factor		
1.5	connect	EOM	20-7b	1	4.3E-4			
	power	EOC	20-13	1	1.30E-03			
	cable	EOC	20-12	13	1.30E-02	High (x10)		
	Comment	Performed by	Performed by Contractor Worker					
	Location:	Out of MCR				Total Step HEP	1.47E-01	
	6 H	EOM	20-7b	1	4.3E-4	·		
	fuel hose	EOC	20-13	1	1.30E-03			
1.9	connection	EOC	20-12	13	1.30E-02	High (x10)		
	Comment	Performed by	Contractor We	orker				
	Location:	Out of MCR				Total Step HEP	1.47E-01	
	fuel	EOM	20-7b	1	4.3E-4			
	isolation					Moderate*		
1.11	valve open	EOC	20-13	2	3.80E-03	(x4)		
	Comment	Performed by Field Operator						
	Location:	Out of MCR		Total Step HEP	1.69E-02			
	Start							
	generator	EOM	20-7b	1	4.3E-4	Moderate	0	
1.18	Comment	If the step is a	overlooked, it c	(X4)				
	Location:	Out of MCR		Total Step HEP	0.00E+00			
	fuel pump	EOM	20-7b	1	4.3E-4	·		
	test start							
	and check					Moderate		
1.19	the hose	EOC	20-22	3	8.10E-02	(x4)		
	connection					```		
	Comment	Performed by	/ Field Operato	r				
	Location:	Out of MCR Total Ster				Total Step HEP	3.26E-01	
	Mobile	EOM	20-7b	1	4.3E-4	· ·		
	generator							
4.00	status	EOC	20-11	1	1.30E-03	Woderate		
1.22	check					(x4)		
	Comment	Performed by	/ Field Operato	r				
	Location:	Out of MCR				Total Step HEP	6.92E-03	
	close(conn	EOM	20-7b	2	1.3E-3	·		
	ect) circuit							
	breaker	EOC	20-12	12	3.80E-03	Moderate		
2.6		Performed by Field Operator				(x4)		
	Comment	Appendix Lists are Used						
	Location:	Out of MCR				Total Step HEP	2.04E-02	

NGS KEPCO INTERNATIONAL NUCLEAR GRADUATE SCHOOL

Execution Recovered							
Critical Step No.	Recovery Step No.	Action	HEP (Crit)	HEP (Rec)	Dep.	Cond. HEP (Rec)	Total for Step
1.5		connect power cable	1.47E-01				1.02E-03
	1.22	Mobile generator status check		6.92E-03	ZD	6.92E-03	
1.9		fuel hose connection	1.47E-01				4.80E-02
	1.19	fuel pump test start and check the hose connection		3.26E-01	ZD	3.26E-01	
1.11		fuel isolation valve open	1.69E-02				5.51E-03
	1.19	fuel pump test start and check the hose connection		3.26E-01	ZD	3.26E-01	
1.18		Start generator	0.00E+00				0.00E+00
	1.22	Mobile generator status check		6.92E-03	ZD	6.92E-03	
2.6		close(connect) circuit breaker	2.04E-02				2.04E-02
Total Unrecovered:			3.32E-01		Tc	otal Recovered:	7.49E-02

* Stress factor adjusted Individually because the HRA Calculator program does not allow changes to the "Experience Level" of subtask

Apply to Mobile Equipment HRA (4/4)

- Considering the STRESS levels applied in ADV local control and the participation of contractor workers (novice crew), the total recovered HEP for mobile generator is 7.49E-02, approximately twice as high as the example in EPRI document
- These results are more consistent with existing domestic HRA processes and assumptions than examples from EPRI

	Calculation value : Mobile generator	EPRI example : Portable Pump
Total HEP (recovered)	7.68E-02 Cognition : 1.99E-03, Execution : 7.49E-2	3.49E-02 Declare ELAP : 2.7E-03, Pump Deployment : 3.2E-02, Pump Implement : 1.5E-04

Conclusion

- The nuclear industry is continuing its efforts to incorporate mobile equipment utilization strategies into the PRA model
- The HRA for mobile equipment requires reasonable engineering judgment and a common consensus among expert groups
- These applications should not deviate from the fundamental methodology of PRA

 \odot Ex) HR-G6: Check the consistency of post-initiator HEP quantification

 To give credit to mobile equipment operation in the PRA, the conditions applied for HRA in existing PRA should be consistent applied

Thank You

