Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 13-14, 2021

## **Preliminary Prediction of CET for Severe Accident using Machine Learning**

Suwon Lee<sup>a</sup>, Young-Suk Bang<sup>a</sup>, and Jaehyun Cho<sup>b</sup> <sup>a</sup>FNC Technology Co., Ltd., <sup>b</sup>Korea Atomic Energy Research Institute \*Corresponding author : swlee@fnctech.com



www.fnctech.com





## Selection of Training Variables

**Results of Analysis and Prediction** 



IJ

Π

## I. Introduction

- The core exit temperature (CET) is typically used to a criterion for determining the entry of a Severe Accident.
- If CET can be predicted, operators will be more effectively coping to the accident because it is possible to secure response time until the entry of SA.
- Recently, the importance of the 4<sup>th</sup> industrial revolution technology such as an artificial intelligence (AI) is emerging and plant conditions including CET can be predicted using machine learning, a representative AI technique.
- In this study, the training data for machine learning was obtained from MAAP5 analysis of the OPR-1000.

## **II. Selection of Training Variables**

### Mass and Energy balance

#### ► Using variables for global primary system of MAAP5 code

| 1   | Total Initial Water Mass, evaluated at time zero     |
|-----|------------------------------------------------------|
| 1.1 | Initial water mass : MWPST0                          |
| 1.2 | Initial steam mass : MSTPS0                          |
| 2   | Integrated Water Mass Addition                       |
| 2.1 | Engineered safeguard injection : MESFPS              |
| 3   | Integrated Water Mass Loss                           |
| 3.1 | Letdown & relief flows : MLETPS                      |
| 3.2 | Break flows : MBRKPS                                 |
| 3.3 | Steam loss to zirconium and steel oxidation : MZRRXN |

→Most variables can't be measured during plant operations especially energy related variables.

→This method aims to be applied to the NPPs as an assistance tool for decision making of operators.

|                                    | 1                                   | Total Initial Energy, evaluated at time zero  |  |
|------------------------------------|-------------------------------------|-----------------------------------------------|--|
|                                    | 1.1                                 | Initial water energy : UFLPSO                 |  |
|                                    | 1.2                                 | Initial core energy : UCRNO                   |  |
|                                    | 1.3                                 | Initial structure energy : UCSO               |  |
| 1.4 Initial corium energy : UCMPSO |                                     |                                               |  |
|                                    | 2                                   | Integrated Energy Addition                    |  |
|                                    | 2.1                                 | Decay energy inputs : UDECPS                  |  |
|                                    | 2.2                                 | Fission produce decay energy : UFPDEC         |  |
|                                    | 2.3                                 | Zirconium and steel oxidation energy : UZRH20 |  |
|                                    | 2.4                                 | Engineered safeguard system sources : UWESF   |  |
|                                    | 2.5                                 | Pump energy inputs : UMCPMP                   |  |
| /                                  | Ablated reactor vessel wall : URPVB |                                               |  |
|                                    | 2.7                                 | Radiation from reactor cavity : UPTRD         |  |
|                                    | 3                                   | Integrated Energy Loss                        |  |
|                                    | 3.1                                 | Letdown & relief flows : ULETPS               |  |
| 0                                  | 3.2                                 | Break flows : UBRTOT                          |  |
|                                    | 3.3                                 | Corium debris outflow : UDEBRS                |  |
|                                    | 3.4                                 | Primary system heat losses : QPHSCN           |  |
|                                    | 3.5                                 | Losses to secondary : U2SEC                   |  |

## **II. Selection of Training Variables**

## Diagram of mass and energy transfer for the system

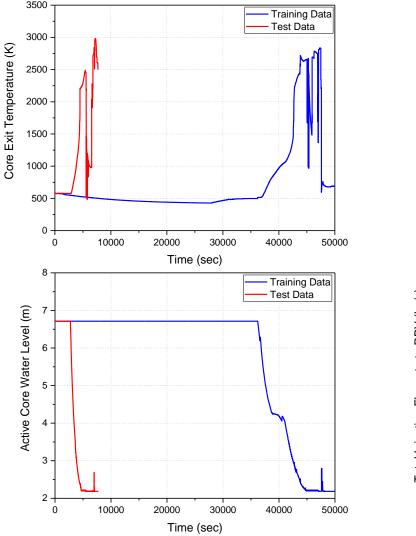
### Main training Variables

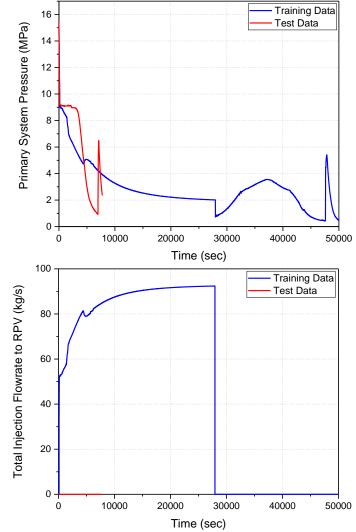
| transfer for the system                           | Regions     | Variables                                                                                                                                        |
|---------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | RPV         | PPS: Primary system pressure<br>TCREXIT: Core exit temperature<br>MWCOR: Water mass inside core<br>(Replaceable with core water level)           |
| AFW S/G Containment                               | ESF         | WESF: Total injection flowrate to RPV                                                                                                            |
| (flow rate) $(P/T/LVL)$ $(P/T/LVL)$ $(P/T/LVL)$   | Containment | PEX0: Containment pressure<br>TGRB: Containment temperature<br>MWCT: Water mass inside containment<br>(Replaceable with containment water level) |
| ESF<br>(flow<br>rate) Injection<br>Relief & break | S/G         | PSGGEN: S/G pressure<br>TGSG: S/G temperature<br>MWSG: S/G water mass<br>(Replaceable with S/G water level)                                      |
| ←→ Heat transfer                                  | AFWS        | WAFSG : Injection flowrate to S/G                                                                                                                |

### **TCREXIT (CET)** as a training variable

- The CET variables are only used in a training step not a prediction.
- Including the target variable (CET) in training dataset is typical method of supervised learning

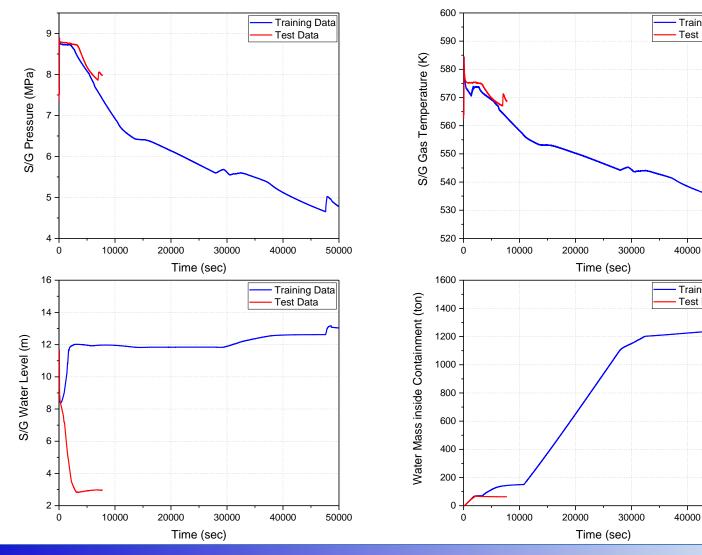
#### Accident scenarios for Training and Test Case


|             | Training case                                                                  | Test case                         |
|-------------|--------------------------------------------------------------------------------|-----------------------------------|
| Init. Event | SBLOCA                                                                         | SBLOCA                            |
| Break size  | 2 in                                                                           | 2 in                              |
| ESF         | HPSI available<br>(assumes failure of recircul<br>ation mode)<br>SIT available | HPSI unavailable<br>SIT available |
| AFWS        | MD-AFWP available                                                              | MD-AFWP unavailable               |


#### Results of Training and Test Case

| Soc.                        | Time (sec)    |           |  |
|-----------------------------|---------------|-----------|--|
| Seq.                        | Training case | Test case |  |
| Core Uncover                | 36,773        | 2,862     |  |
| CET exceeds 1200F           | 39,607        | 3,698     |  |
| Relocation to Lower<br>Head | 47,597        | 6,970     |  |
| RPV failure                 | 50,835        | 7,751     |  |

Since the CET is not functionally required after the RPV failure, the analysis was terminated when the RPV was failed.


#### Results of Main Variables





FNC Technology Co., Ltd.

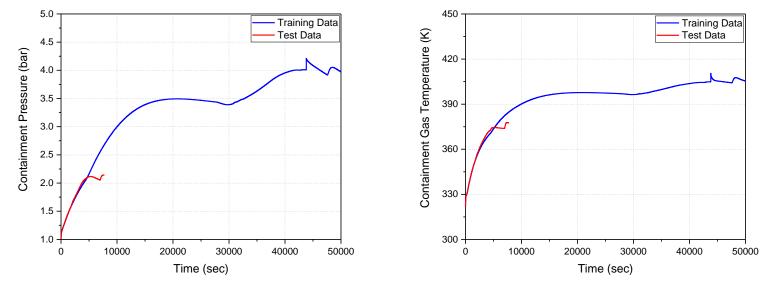
#### Results of Main Variables



FNC Technology Co., Ltd.

Training Data

50000


50000

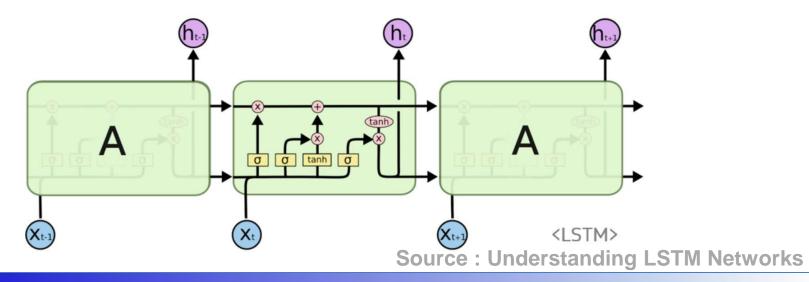
Training Data

Test Data

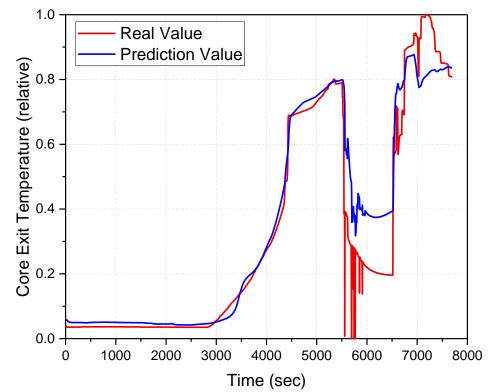
Test Data

#### Results of Main Variables




#### Extraction of Dataset

- Training Dataset of 10,000 from Training Case
- Prediction Dataset of 1,500 from Test Case


## LSTM (Long Short Term Memory, Hochreiter, S., & Schmidhuber, J. (1997))

- One of Major Models of RNN (Recurrent Nenural Network)
- ► A solution of the Long-term Dependency
- To predict future data by considering historical data more macroscopically, as well as just previous data

### Architecture of LSTM



#### Result of CET Prediction using LSTM



► The prediction result is generally similar to behavior of MAAP5

# Some differences are existence in the sections with large CET changes.

## **IV. Conclusions**

- The prediction of the CET was performed by MAAP5 code and Machine Learning, especially LSTM techniques.
- The most important thing is a variable selection
  - Variables which are closely related to the target variable for the accuracy of the prediction results
  - ► Measureable variables for the applicability of this approach
- To improve the prediction performance, it is needed that iterative machine learning using collected training dataset from analysis results of various scenarios, which is planned as a future works.
- This approach is expected to provide an idea or methodology for developing the assistant system of operator's decision making.

# **THANK YOU**

