A COPA Fission Product Release Analysis for a Gen–IV Numerical Calculation Case

Young Min Kim¹ and Eung Seon Kim Korea Atomic Energy Research Institute 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 34057, Korea ¹ Corresponding author: nymkim@kaeri.re.kr

Objectives

Pyrolytic Carbon

ilicon Carbide

Fuel Kernel

Porous Carbon Buffe

- Another accident condtion (AC) benchmarking task on the fission product (FP) releases from a coated fuel particle (CFP) has been performed in the frame of Gen–IV (INL/EXT-20-60147), as a follow-on of the CRP-6 AC benchmark (IAEA-TECDOC-1674).
- This study treats the calculations of the FP releases from a CFP using the COPA FPRC (KAERI/TR-7945/2019) module for a Gen-IV numerical calculation case (NCC) problem

and the comparison them with other countries' results.

Numerical Calculation Case

• To calculate the release of the fission products Ag, Cs, Sr, Kr from a CFP during irradiation and heating

Calculation Results and Summary

FP releases during heating

FP releases during irradiation

Calculated Ag, Cs, Sr, and Kr release fractions for the NCC

	After irradiation				After 200h heating			
	Ag	Cs	Sr	Kr	Ag	Cs	Sr	Kr
INL	6.7×10 ⁻⁵	1.8×10 ⁻¹²	4.3×10 ⁻¹¹	2.1×10-89	5.0×10 ⁻¹	6.7×10-4	3.1×10 ⁻²	4.0×10 ⁻¹⁴
JAEA	2.8×10-5	1.2×10 ⁻¹⁴	4.2×10 ⁻⁶	7×10 ⁻¹²²	4.6×10 ⁻¹	2.9×10-4	5.5×10 ⁻²	1.2×10 ⁻¹⁷

- After irradiation and heating, silver release fractions are in very good agreement, but there are large discrepancies between the release fractions of cesium, strontium, and krypton.
- It has been concluded through the comparison of the three codes' physical models that the discrepancies resulted from a numerical calculation accuracy, not from differences in the physical model (INL/EXT-20-60147),

