Toward the Robust and Resilient Nuclear System for the Highly Improbable Event

Korean Nuclear Society Autumn Meeting October 21-22, 2021

Analysis of Pressurizer Surge Line Flow Effect on TMI-2 Severe Accident Progression

Rae-Joon Park, Bub-Dong Chung, Donggun Son, Jun Ho Bae, Sung Won Bae, Kwang Soon Ha

Introduction

□ TMI-2 원전 중대사고 개요

	TMI-2
원전 소재	미국 펜실바니아
노형	가압경수로(<mark>PWR</mark>)
설계자	Babcock & Wilcox
출력	906 MWe
상업운전 개시일	1978.12.30
사고발생일	1979.03.28
사고원인	설비 결함과 인적 실수
사망자 및 영향	없음
사고 특이사항	노심용융, 원자로용기 및 격납건물 건전성 유지

TMI-2 Plant

Plant Data of TMI-2

Reactor	Data	Core & Fuel Assemblies	Number
Design Heat Output	2,272 MWt	Fuel Assemblies	177
Vessel Coolant Inlet Temperature	292 °C	Fuel Rods per Fuel	208
Vessel Coolant Outlet Temperature	320 °C	Assemblies	200
Core Coolant Outlet Temperature	321 °C		
Average Core Fuel Temperature	649 °C	Tubes per Assembly	16
Core Operating Pressure	15 MPa		

Detailed TMI-2 Main Events

Time (s)	Main Events	
0	Turbine and main feedwater pump trip (Total Loss of Feed Water)	
3	Pressurizer PORV opening (15.5 MPa)	
8	Reactor scram on high pressure signal	
13	No Pressurizer PORV closing (15.2 MPa) (SBLOCA)	
41	Operation of 1 (of 3) makeup pump 1B	
122	HPI operation	
278	Stop of HPI	
480	Auxiliary feedwater startup	
552	Core boiling begins	
4,440	Shutdown B-loop RCP (end of phase 1)	
6,000	Shutdown A-loop RCP	
6,184	Core uncovery	
7,742	Cladding oxidation begins (T= 1,000K)	
7,719	Cladding failure (T=1,117K)	
8,340	Close of the PORV line block valve	
9,014	Fuel melting	
10,440	Restart one B-loop RCP (end of phase 2)	
11,580	Shutdown of the B-loop RCP	
12,000	Start of primary system feed and bleed	
13,440	Core material slumping (end of phase 3)	
18,000	General emergency declared (end of phase 4)	

End State in TMI-2

TMI-2 사고의 최종 모습

Research Needs & Objective

- The surge In the TMI-2 severe accident, the break location was the PORV (Pilot Oprated Relief Valve), which was located top of the pressurizer.
- A flow path through the the surge line between the hot leg and the pressurizaer was generated and the water level of pressurizer was very high, which resulted in the melt progression in the core.
- The surge line modeling effect on the core melt progression in the TMI-2 severe accident was analyzed using the CINEMA computer code.

CINEMA Development in Korea

 An integrated severe accident analysis computer code (CINEMA) has been developed by the collaboration in Korea.

CINEMA: Code for INtegrated severe accidEnt Management Analysis

CINEMA Nodalization for TMI-2

- Using TMI-2 Design Data
- Based on SCDAP/RELAP5 Input

CINEMA-CSPACE Nodalization

Steady State Results

Parameter	Plant Operating Condition	CINEMA Results
Reactor Power (MW)	2700.0	2700
Primary System Pressure (MPa)	15.2	15.3
Cold Leg Temperature 1A (K)	561.0	571.0
Cold Leg Temperature 2A (K)	548.0	571.0
Hot Leg Temperature Loop A (K)	592.0	598.0
Hot Leg Temperature Loop B (K)	592.0	598.0
Feedwater Temperature (K)	513.0	513.0
SG A Pressure (MPa)	7.31	5.85
SG B Pressure (MPa)	7.24	5.85
SG A Steam Temperature (K)	586.0	578.0
SG B Steam Temperature (K)	585.0	579.0

Pressurizer Water Level

PORV의 Critical Flow 모델(New HF 모델)

Measured Data and SCDAP/RELAP5 Results

CINEMA Results

Pressurizer Pressure

Fuel Cladding Temperature

CINEMA Results on No CCFL

CINEMA Results on Strong CCFL in Pressurizer Surge Line

Conclusions

- The surge line flow modeling effect on the core melt progression in the TMI-2 severe accident was analyzed using the CINEMA.
- The CCFL input parameters in CINEMA affect the pressurizer water drain to the core through the pressurizer surge line.
- The CINEMA results on strong CCFL model are very similar to the TMI-2 data in general.
- More CINEMA analysis for a melted fuel relocation and quenching process in the core and lower plenum are necessary to simulate the late phase of the TMI-2 severe accident.

Toward the Robust and Resilient Nuclear System for the Highly Improbable Event

Thank You!

