

Automated Exhaustive Test Case Generation for FBD Program

Sang Hun Lee a*, Sung Min Shina, Hyun Gook Kang b, Jong-Gyun Choia

aKorea Atomic Energy Research Institute, 111 Daedeok-daero, 989beon-gil, Yuseong-gu, Daejeon, Republic of Korea
bRensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA

*Corresponding author: lees@kaeri.re.kr

1. Introduction

For the function block diagram (FBD) programs that

run on programmable logic controllers (PLCs) [1, 2],

thorough testing of software is crucial for ensuring the

safety of nuclear power plants (NPPs). By its nature, the

NPP software is a logical matter and determines the

function of hardware in the digitalized environment. The

space that digitalized input and internal variables

construct can be considered as the domain that the

software may encounter during system operation, which

may be large but not infinite. If we can perform the

software testing over the whole of this space, the

limitations related to the state-of-the-art test-based

software reliability quantification method, such as the

uncertainty in input selection and model parameter

estimation [3, 4], can be resolved.

In this study, the automated exhaustive test case

generation framework for NPP safety-critical software

testing is proposed which formally translates the FBD

program into Satisfiability Modulo Theories (SMT)

formula and generates exhaustive test cases by iteratively

solving the translated SMT formula using an SMT solver.

2. Methods

2.1 Satisfiability Modulo Theory

For the static analysis and program verification,

Boolean satisfiability (SAT) and SMT have received

considerable attention during the last decade to derive the

test cases from various models automatically [5]. The

SMT problem is the problem of determining whether

such a formula in first-order logic is satisfiable where

some function and predicate symbols have additional

interpretations such as linear inequalities or function

symbols.

As the test case generation is the process of identifying

the software variables’ states that satisfy the given test

requirement, the exhaustive test case generation problem

can be formulated as the problem of finding all possible

combinations of software variables’ states that generate

the desired output, as shown in Equation (1).

 𝑎𝑟𝑔
𝑥𝑖∈𝑆

𝑓(𝑥𝑖) = 𝑡𝑟𝑢𝑒 ······················ (1)

In Equation (1), the formula (𝑓) represents the FBD

program that defines the logic between the software

safety output (𝑓(𝑥𝑖)) and the software input and internal

variables, or the literals (𝑥𝑖). Space (𝑆) is defined as the

domain of all possible software input and internal

variables’ states that may encounter during software

operation. For NPP safety software, the test requirement

can be set to the safety signal initiation by the software

(i.e., 𝑓(𝑥𝑖)=𝑡𝑟𝑢𝑒). In this case, the derived test cases will

reflect all possible safety signal demand situations. In

this study, the proposed approach utilizes Z3 [6], to

identify the states of the software variables’ states that

generate the safety signal for FBD program.

2.2 Translation from FBD into SMT

In order to generate exhaustive test cases for FBD

program, we first formally defined the FBDs based on

the ideas discussed in previous studies [7, 8] and FBD-

to-SMT translation rules were developed based on the

formal definition of FBDs. As shown in Fig. 1, the

translation starts with generating SMT formulas for all

individual function blocks (FBs), and continues for

component FBD and system FBD.

Fig. 1. FBD-to-SMT translation procedure.

2.3 Exhaustive test case generation for FBD program

Given the SMT formulas translated from FBD

program, a test case can be generated by finding the

states of software input and internal variables that satisfy

the selected test requirement. The procedure for

generating exhaustive test cases for FBD program

consists of three major parts: 1) defining the software

variables and FBD program under test, 2) defining the

test requirements, and 3) retrieving the model for

software variables that satisfies the test requirements. Fig.

2 shows a flowchart of the exhaustive test case

generation procedure.

Transactions of the Korean Nuclear Society Virtual Autumn Meeting

October 21-22, 2021

Fig. 2. Flowchart of exhaustive test case generation procedure.

In the first part, the program information required for

test case generation, such as program variables and the

FBD programs, are defined. Here, the names and

possible ranges of all variables under test and constants

as well as the SMT formula translated based on FBD-to-

SMT translation rules are declared. In the second part,

the initial test requirement (TR1) is defined and added as

a set of constraints of the formula to be solved. In the

third part, the algorithm at least one interpretation for the

defined variables that evaluate a given formula to satisfy

test requirement, the SMT solver returns sat as a

satisfiability check result. If it is unsatisfiable, it returns

unsat. If the formula is satisfiable, the model that makes

the formula true is retrieved and saved as a single test

case for the FBD program. In order to derive another

model, the negation of the derived model at each iteration

(TestCasei at i-th iteration) is added as a new constraint

to the test requirement which will be used for next

iteration (TRi+1). This requires the SMT solver to find

another solution at the next iteration (TestCasei+1 at

(i+1)-th iteration) for the formula except the ones found

in previous iterations. At each iteration, the derived

model is added to the TestSet. The process is repeated

until the solver returns unsatisfiable (unsat) as a

satisfiability check result for the formula given the test

requirement. In result, the derived TestSet represent the

exhaustive test cases for the initial test requirement

where each test case is exclusive to each other

3. Case Study

3.1 Exhaustive test case generation of target software

As a case study, the exhaustive test cases for

pressurizer pressure-low reactor trip logic of KNICS

IDiPS-RPS bistable processor (BP) trip logic software [9]

were derived. The FBD program of BP software was

loaded to the FETCG which generates the test module

and the translated SMT formula, as shown in Fig. 3. The

test module generates exhaustive test cases from the

defined test requirement for the FBD program based on

the three levels of translated SMT files (i.e., FBs,

component FBDs, and system FBD). While the BP trip

logic software generates various external outputs

including heartbeat and diagnostic signals, the system

output variable considered in this study for test case

generation purpose was selected as trip signal output.

The FETCG then generates the SMT formula for the

software output which the tester provided and derives the

software input and internal variables. In the case study,

the FETCG derived 35 variables among a total of 612

variables defined in BP software as the program input

and internal variables that contribute to generating the

pressurizer-pressure-low trip signal output.

Fig. 3. Generated files of the FETCG for IDiPS-RPS BP

software: (a) Function block, (b) Component FBDs, (c)

System FBD, (d) Test module.

3.2 Test execution and result analysis

The generated exhaustive test cases were post-

processed into the format of software test-bed to verify

whether the machine code of BP software generates the

trip signal given the derived test cases. Fig. 4 shows the

test results for the exhaustive test cases using a

simulation-based software test-bed developed in authors’

previous study [10]. The expected output for all test cases

is set as the value of the memory address of output

variable to be true (0×1). In result, all the 147,694,036

test cases generated the trip signal, and the test was

conducted in 3.45 hrs using 64 units of 3-GHz logical

processors (∼ 5.38 msec per test case). As all test cases

generated correct output, BP software was proven to be

error-free in terms of its safety function (pressurizer-

pressure-low trip signal generation) for the target

scenario.

Transactions of the Korean Nuclear Society Virtual Autumn Meeting

October 21-22, 2021

Fig. 4. Test results of the case study for BP pressurizer-

pressure-low trip logic: (a) Test case file, (b) Expected output

file, (c) Program file, (d) Screenshot of simulation-based test-

bed execution, (e) Test result file, (f) Test summary file.

4. Conclusion

This study proposes an automated exhaustive test case

generation method for FBD programs. Testing the NPP

software is important in demonstrating that the software

generates its dedicated safety function when demand

comes. The proposed framework formally translates the

FBD program to SMT formula and the FBDET algorithm

is developed for the exhaustive test case generation. As

an application of the proposed software test method, the

exhaustive test cases for the pressurizer-pressure-low trip

logic of KNICS IDiPS-RPS BP software were derived

and tested using the software test-bed.

Although the proposed framework focused on the

exhaustive test case generation method for the FBD

program used in NPP digital safety systems, the

verification and the performance of the SMT solver used

in the framework should be further investigated for its

ability to generate a correct model and test cases.

While this study only considered the normal range of

the software variables that can occur during its operation;

however, the abnormal inputs that can occur due to the

faults in the PLC module or memory will be also

investigated in the future work.

ACKNOWLEDGEMENT

This work was supported by the Nuclear Safety Research

Program through the Korea Foundation Of Nuclear

Safety(KoFONS) using the financial resource granted by

the Nuclear Safety and Security Commission(NSSC) of

the Republic of Korea. (No. 2106027)

REFERENCES

[1] IEC, Programmable controllers - Part 3: Programming

languages, International Electrotechnical Commission, Geneva,

Switzerland, IEC 61131-3:2013, 2013.

[2] P. S. Acharyulu and P. Seetharamaiah, A framework for

safety automation of safety-critical systems operations, Safety

Science, Vol. 77, pp. 133-142, 2015.

[3] T. L. Chu et al., Development of a statistical testing

approach for quantifying safety-related digital system on

demand failure probability, U.S. NRC, Washington, DC, USA,

NUREG/CR-7234, 2017.

[4] H. G. Kang, H. G. Lim, H. J. Lee, M. C. Kim and S. C. Jang,

Input-profile-based software failure probability quantification

for safety signal generation systems, Reliability Engineering

System Safety, Vol. 94, No. 10, pp. 1542-1546, 2009.

[5] C. Barrett and C. Tinelli, Satisfiability modulo theories, in

Handbook of Model Checking, Cham, Switzerland, Springer,

pp. 305-343, 2018.

[6] L. d. Moura and N. Bjørner, Z3: An efficient SMT solver,

The 14th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, Budapest, Hungary,

Mar. 29 - Apr. 6, 2008.

[7] J. Yoo, E.-S. Kim, J.-S. Lee, A behavior-preserving

translation from FBD design to C implementation for reactor

protection system software, Nuclear Engineering Technology,

Vol 45, No. 4, pp. 489–504, 2013.

[8] D. A. Lee, J. Yoo, J. S. Lee, A systematic verification of

behavioral consistency between FBD design and ansi-c

implementation using HW-CBMC, Reliability Engineering

System Safety, No. 120, pp. 139-149, 2013.

[9] K. C. Kwon and M. S. Lee, Technical review on the

localized digital instrumentation and control systems, Nuclear

Engineering Technology., Vol. 41, No. 4, pp. 447-454, 2009.

[10] S. H. Lee, S. J. Lee, J. Park, E. C. Lee, H. G. Kang.

Development of simulation-based testing environment for

safety-critical software. Nuclear Engineering Technology, Vol

50, No. 4, pp. 570-581, 2018.

Transactions of the Korean Nuclear Society Virtual Autumn Meeting

October 21-22, 2021

