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1. Introduction 

 

In most systems using boiling and two-phase heat 

transfer methods, including nuclear power plants, 

figuring out the state of internal flow and boiling 

phenomena is important for accident prevention and 

effective operation, which is related to predict heat 

transfer coefficient and critical heat flux. The 

measurement of temperature, pressure, and flow rate 

used for system monitoring have difficulties in 

identifying real physical phenomena inside the system, 

only calculation of DNBR correlation is possible. Such 

that, when there is a high probability that boiling or 

two-phase phenomena will occur, there is no 

monitoring tools such as instantaneous thermal power 

increase of a nuclear reactor, ECCS injection during 

LOCA, and ex-vessel cooling using boiling heat 

transfer. This paper is a basic study on real-time 

diagnosis of internal flow and boiling phenomena with 

critical heat flux in systems utilizing boiling or two-

phase heat transfer where it is difficult to directly 

identify internal phenomena. To this end, a convergence 

study of acoustic emission signal measurement 

technology, which is excellent for detecting minute 

changes, and deep learning technology, which has 

excellent predictive diagnostic performance, was 

conducted. 

The acoustic emission signal is an elastic wave 

generated by propagating deformation energy according 

to the physical change of materials or a change in 

system pressure along the medium. The change in the 

displacement of the interface according to the generated 

acoustic wave is converted into an electrical signal and 

the signal is measured. Not only plastic deformation or 

solid crack, but also phenomena in which pressure 

changes such as chemical reactions, phase 

transformations, and phase changes occur are the source 

of acoustic emission (AE) signals. The AE signal 

related to boiling and two-phase is a sound generated 

when the nucleate boiling is grown, or the liquid-gas 

interface is broken on the free surface due to the rise of 

bubbles in the liquid. Another example is the high-

frequency sound, which is initially loud when the 

electric kettle is turned on, is caused by the formation of 

unsaturated nucleate boiling bubbles and rapid 

condensation. As such, this study starts from the simple 

idea that a change in boiling state generates an acoustic 

emission signal. We postulated that the characteristics 

of the acoustic emission signal will be different for each 

boiling heat transfer regimes that have different 

mechanisms. 

Deep learning is composed of various linear 

algebraic functions and a differential-based optimal 

function and has the advantage of easily figuring out 

non-linear relationships that are difficult to grasp with 

human cognitive ability. 

This paper is for predicting and diagnosing the 

boiling regimes inside the system using acoustic signals 

that measured outside the boiling heat transfer system 

and deep learning technology. Section 2 of this paper 

describes the acoustic signal data measured for each 

boiling heat transfer regimes, Section 3 describes the 

deep learning-based real-time boiling heat transfer 

regimes prediction diagnostic model, and Section 4 

describes the model performance evaluation. 

 

2. AE data from pool and flow boiling experiment 

 

Acoustic signal data measured for each boiling heat 

transfer regime were obtained from pool boiling 

experiment [1] and flow boiling experiment [2]. Table I 

summarizes the spectrogram analysis results of acoustic 

emission signals and spectrogram images for 

convection, nucleate boiling regime, CHF and transition 

regime, and film boiling regime. In Table I, the 

characteristics of the acoustic emission signal for each 

boiling regime from the two experiments did not show 

any common characteristics in the convection regime. 

When nucleate boiling occurred on the heated surface, a 

signal with a frequency in the range of 10 to 50 kHz 

was generated, which was due to rapid bubble growth 

and departure. When the critical heat flux occurred, the 

frequency signal in the range of 10-50 kHz as well as 

the signal near 150 kHz and 280 kHz increased rapidly, 

and this was due to the violent vapor film collapse or 

the collapse of the vapor column in which the heat 

transfer region was transitioned. The heating surface 

covered with bubbles and formed with a vapor film 

generated a very low-intensity signal and a stable 

frequency signal in the range of 40-50 kHz at film 

boiling regime. Therefore, based on the results of this 

study, it was expected that results similar to those in 

Table I will be obtained in most systems in which 

boiling heat transfer occurs regardless of the heat 

transfer test method. This was used as a training data set 

for the deep learning-based real-time boiling heat 

transfer regime prediction diagnostic model. 
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Table I. spectrogram images corresponding to each boiling regime of pool and flow boiling 

Boiling 

regime 
Visualized images 

AE spectrogram images 

Pool boiling Flow boiling 

Convection 

   

Nucleate 

boiling 

 
  

CHF and 

Transition 

boiling 

   

Film boiling 

  

- 

 

3. Deep learning for boiling regime classification 

 

For the development of boiling regime classification 

technology, we built and trained the model by using the 

acoustic emission signal data obtained from pool and 

flow boiling experiment. An optimal deep learning 

algorithm with the best performance for predicting the 

boiling heat transfer regime was derived, and a real-

time monitoring technology was developed using the 

model as shown in Fig. 1. This technology firstly 

converted an analog acoustic emission signal (voltage) 

of an acoustic sensor into digital data in real time. A 

series of pre-processing steps were performed from the 

converted binary data to the extraction of the acoustic 

emission signal waveform and the spectrogram 

conversion. The pre-processed data was used as an 

input value to train the deep learning algorithm model, 

and the real-time boiling heat transfer regime was 

finally diagnosed. The entire process in Fig. 1 was built 

on the MATLAB platform, and the data processing 

speed of the entire process was 0.1~0.4 seconds, 

showing fast processing performance. 

 Since the performance of the deep learning algorithm 

for predicting and diagnosing boiling regimes was the 

most important, and various algorithms were tested to 

select the optimal algorithm model. As an test matrix, 

Convolutional Neural Network (CNN), which shows 

excellent performance in image classification, was used, 

and experiments were performed to derive an optimal 

algorithm using four representative CNN algorithms as 

shown in Fig. 2: LeNet[3], AlexNet[4], VGGNet[5], 

and ResNet[6]. 

 

 
Fig. 1. Flowchart of deep learning-based real-time boiling 

regime classification technology 
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Fig. 2. Representative modern convolutional neural network: 

LeNet[3], AlexNet[4], VGGNet[5], ResNet[6] 

 

As shown in Table II, pool boiling and flow boiling 

experimental data sets were used for algorithm training. 

One thing to keep in mind was that the number of 

measured CHF data was small because the experiment 

was abruptly terminated in order to prevent damage 

caused by a sudden heater temperature increase when 

CHF and transition occur. The test matrix of algorithm 

was shown in Table III, and data augmentation to 

diversify the characteristics of the data was performed. 

All models were trained using the Adam optimizer and 

cross-entropy loss function. 
 

 

Table II: Deep learning dataset for training and test 

(a) Pool boiling 

Boiling 

regime 
Conv. Nucleate 

CHF, 

Transition 
Film Total 

Train 1,953 7,381 5 307 9,646 

Test 217 819 3 34 1,073 

(b) Flow boiling 

Boiling 

regime 
Conv. Nucleate 

CHF, 

Transition 
Film Total 

Train 450 3,465 60 0 3,975 

Test 150 1,155 20 0 1,325 

 

 
Table III: Test matrix of deep learning model for performance 

optimization of boiling regime classification 

Algori-

thm 

Data 

augmentation 
Optim. Loss. Epoch 

LeNet 
- Random 

noise 

- Resize 

- Cropping 

Adam 
Cross-

Entropy 

100~ 

2,000 

AlexNet 

VGGNet 

ResNet 

 

4. Results and Discussion 

 

As a result of training each of the four CNN 

algorithms and checking the boiling regime prediction 

accuracy, the results were presented as shown in Table 

IV. For flow boiling, LeNet, AlexNet, and VGGNet 

showed 49-57% prediction accuracy, whereas ResNet 

model showed 100% prediction accuracy. For pool 

boiling, LeNet and VGGNet showed low accuracy of 

54.4% and 72.5%, respectively, whereas and AlexNet 

and ResNet showed high accuracy of 97.9% and 99.7%, 

respectively. Through both pool and flow boiling data 

learning and testing, the ResNet algorithm showed the 

best performance in classifying the boiling regimes. In 

the case of flow boiling, all data of the entire boiling 

regime were accurately classified, whereas in the case 

of pool boiling, only CHF and transition boiling regime 

data could not be classified. As described above, it was 

judged that the amount of data was not sufficient to 

distinguish the boiling regime because the number of 

data was very small. The model for classifying the 

optimal boiling heat transfer regime derived through 

this deep learning experiment was a CNN-ResNet and 

spectrogram image-based model. 

In general, the deep learning algorithm has an error 

of losing the features originally possessed by the input 

data during training as the network layer is deeper. For 

that reason, it was reported that the deeper the network, 

the more the training was saturated at some level due to 

the gradient vanishing problem. On the other hand, the 

reason that Resnet's performance was superior to the 

other three CNN models was because the skip 

connection algorithm that train the network with the 

previous information, and thanks to this, it can be easily 

optimized in the deep network and showed high 

accuracy [6]. For this reason, it was analyzed that 

ResNet showed the best performance in this algorithm 

test experiments. 

 
Table IV: Comparison of boiling regime classification 

performance 

Case CNN Algorithm 
Test Acc. (%) 

Pool boiling Flow boiling 

1 LeNet 54.4 49.2 

2 AlexNet 97.9 57.1 

3 VGGNet 72.5 57.1 

4 ResNet 99.7 100.0 

 

5. Conclusions 

 

In this paper, with the aim of diagnosing the two-phase 

flow and boiling regime, including the critical heat flux 

of a nuclear power plant, the fundamental study was 

performed to classify the internal boiling regime in real 

time through acoustic emission signals and deep 

learning technology. Through the fundamental thermal 

hydraulic experiment of pool and flow boiling and 

spectrogram frequency analysis of the acoustic emission 

signal, the signal in a specific frequency range that can 

distinguish convection, nucleate boiling, CHF and 

transition boiling, and film boiling regime was derived. 

Using this, the real-time boiling regime classification 

technology based on CNN-ResNet algorithm was 

developed using the MATLAB platform. This result can 

be used to confirm the safety of the two-phase flow heat 

transfer system and can be used as a fundamental result 

necessary for real-time diagnosis and prediction of 

safety margin. 
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