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1. Introduction 

 
Accurate safety analyses of various accident scenarios 

for a nuclear power plant is dependent on the accuracy of 
the nuclear power plant safety analysis code. Safety 
analysis codes are consisted of governing equations and 
constitutive equation, which is an empirical correlation 
developed from experiments. In particular, separate 
effect tests (SETs) greatly contribute to the performance 
improvement of the constitutive equations. 

Integral effect tests (IETs) have been performed 
worldwide recently. The safety analysis code which has 
good accuracy for SET case sometimes shows 
unsatisfactory accuracy for IETs. For these cases, the 
error in the constitutive equations is the most influential 
factor other than the user effect. However, it is extremely 
difficult to directly use the IET data for improving the 
performance of the constitutive equation. Therefore, in 
this study, a methodology to improve the performance of 
the constitutive equation by directly using experiment 
data is suggested. If the suggested methodology can 
improve the code with direct application of IET data, the 
accuracy of a nuclear power plant safety analysis code 
can be significantly improved with relatively little effort. 

The method starts by generating data with constitutive 
relation, and data is clustered using an artificial neural 
network. The optimal multiplier coefficient for each 
clustered group is obtained to improve the code accuracy. 
The initial point of the optimization process is calculated 
from the KREM method. In the previous study, data 
generation and clustering were conducted [1,2] and 
MARS-KS code was used for the demonstration example. 
The multiplier coefficient for each group was obtained 
next by comparing the code result to SUBO experiment 
[3]. A similar study for MIT pressurizer experiment was 
also conducted by Kim et al. [4] previously. In this paper, 
the calculated optimal multiplier coefficient for each 
sub-regime is presented for the MIT pressurizer 
experiment. 
 

2. Data Clustering 
 

In the previous study [1], data clustering was 
conducted. The clustered data is MARS-KS constitutive 
equations: wall heat transfer, wall friction, interfacial 
heat transfer, and interfacial friction. For calculating 
these equations, thermal-hydraulic conditions and 
geometry information have be determined. The range of 
input parameter is selected to include the range of nuclear 
power plant’s design basis accident. Input parameter is 
randomly selected from the given range, and calculate 

the constitutive equations. Figure 1 shows the calculated 
constitutive equations which can be used for clustering.  

 

 
Fig. 1. Training data (from left top: coefficient of liquid wall 
HTC, vapor wall HTC, liquid wall FRIC, vapor wall FRIC, 

liquid interfacial HTC, vapor interfacial HTC, interfacial 
FRIC) [1] 

 
Self-organizing map is used for data clustering [5]. In 

the process of the clustering, the number of clusters 
should be pre-determined by the user. For determining 
the optimal number of cluster number, silhouette 
coefficient and gap coefficient are used. This process was 
conducted previously and the results are presented in the 
previous study [2]. The optimal clustering number is 
shown in Table Ⅰ. Figure 2 shows the clustering results. 
By using this result, the error of the code and experiment 
can be decreased by calculating the multiplier coefficient 
for each group. The error varies according to changes in 
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the multiplier coefficient, which infers areas of 
improvement for the constitutive equation. 

 
Table Ⅰ: Minimum group number of clusters [2] 

 Minimum 
clustering number 

Optimum 
clustering number 

Wall Heat 
Transfer 71 109 

Wall Friction 55 55 

Interfacial 
Heat Transfer 49 83 

Interfacial 
Friction 51 60 

 

 
Fig. 2. Wall friction clustering results according to the flow 

regime [2] 
 
 

3. Multiplier Coefficient Optimization 
 
 

3.1. Multiplier Coefficient Optimization Method 

 
Multiplier coefficient optimization process can be 

divided into three steps: Initial point determination, 
gradient calculation, and step size determination. Initial 
point is calculated from the KREM method. Gradient is 
numerically calculated for each multiplier coefficient. 
The conjugate gradient method is used in the 
optimization process. Optimization ends when the size of 
the gradient satisfies the exit criteria or when the error is 
not reduced in each iteration process. During the 
optimization process, most of the multiplier coefficients 
are within the constraint range [0.8, 1.2]. The range is 
determined by considering the uncertainties of the 
constitutive equations. However, not all the sub-regime 
from the constitutive equations have 20% uncertainty 
since some sub-regime can be located outside of the 
experimental dataset used for developing the constitutive 
equations. In these cases, the range of the multiplier 
coefficient is expanded to the range [0.1, 10.0]. 

 
3.2. KREM method 

 
KREM method is used to find the initial point for the 

optimization. This method was developed by Korean 
Nuclear Industry, which uses non-variable statistical 
method. From this method, the confidence limit can be 
calculated.  
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Equation 1 should be satisfied in order to exceed p% 

of the population with q% confidence through n random 
extractions. In this study, since the authors assumed to 
have upper 95% level confidence, 59 cases were selected 
for determining the initial point to satisfy equation 1.  

 
3.3. MIT pressurizer experiment 

 
In the MIT pressurizer experiment, subcooled water is 

injected to a pressure vessel which is partially filled with 
the saturated water. Detailed information about MIT 
experiment is in references [6]. 

 
Fig. 3. Error of the MARS-KS code according to the 

optimization process step. 
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Figure 3 shows the error for each optimization step. 

Step 1 in the x-axis is the default MARS-KS simulation 
case, where the multiplier coefficients are all unity for 
sub-regime. Step 2 is the case where initial conditions are 
determined through the KREM method. Step3 is the 
optimization process for each iteration. As the MIT 
pressurizer experiment is not steady-state experiment, 
MSE cannot be used as the error estimation as it was in 
the previous study for the SUBO experiment. Therefore, 
the error is calculated using a method that extends 
dynamic time warping [7]. The error function is defined 
in Equation 2. The error is estimated from the distance 
between the experimental data and the code results.  

 
 Error
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(2) 

 
Figure 4 shows the experimental data, and code results 

during the optimization process. 
 

 
Fig. 4. MIT pressurizer experiment and code simulation 

results 
 

4. Summary and Further Works 
 

Steady efforts are being made to improve the 
accuracy of nuclear power plant safety analysis codes. 
As a part of this effort, the constitutive equations’ 
performance is further enhanced by accumulating more 
data. In this study, an artificial neural network based 
clustering method is used to categorize constitutive 
equations in finer sub-regimes. Multiplier coefficients 
are then applied to each sub-regime so that the safety 
analysis code can self-improve its accuracy from the 
accumulation of the data. In order to find the best set of 
these multiplier coefficients, an optimization method is 
newly developed and presented in this paper. The data 
required for the process was generated using MARS-KS 
code. The initial set of multiplier coefficient optimization 
is calculated using the KREM method to make the 
optimization process more effective. The optimal 

multiplier coefficients were calculated using the 
conjugate gradient descent method. From this method, 
the error between code and experiment is reduced. For 
the testing of the method, the MIT pressurizer 
experiment is used in this study. However, the error 
reduction was not substantial compared to the SUBO 
case. This can be due to the larger user effect than the 
constitutive equation effect in the MIT pressurizer 
experiment simulation. For further exploration of the 
suggested method IET experiments will be next selected 
and tested. 
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