PO6E02

KNS 2021 Virtual Autumn Meeting, 10/21~22, 2021, Korea

The Preliminary Seismic Probabilistic Safety Assessment for HANARO Research Reactor

Hyunae Park, Sang Hoon Han, Yoon-Hwan Lee, Seung-Cheol Jang*

Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-Gu, Daejeon * scjang@kaeri.re.kr

Introduction

* According to the requirements of the Citizen Verification Team (2019.4 ~ 2018.3), a research project was launched in 2019 * The fragility curves of a SSC (Structure, System and Component) is defined as conditional failure probabilities for a given PGA level.

The major SSCs analyzed in seismic events:

- * The objective of the project is to prove that the operating research facilities are fully satisfied with the domestic nuclear safety goals (e.g., less than 0.1% of individual risks) through the risk profile assessment of the research site.
- * This study focuses on, the preliminary level 1 seismic PSA for HANARO research reactor, which is one of the important contributor for research site risk assessment.

Level 1 Seismic PSA Modeling

* Level 1 seismic PSA is performed that consists of:

- Seismic hazard analysis
- Seismic fragility analysis
- Plant response analysis (event tree and fault tree analysis)
- Core damage frequency (CDF) quantification.
- * A seismic PSA model was constructed to describe scenario and component failure by earthquake, and CDF values were obtained for each bin.
- In this study, it is assumed that S-STRUCT (gross structure collapse) leads to core damage directly.
 scenario except S-LOCA (loss of coolant accident) is assumed S-LOEP (loss of electric power) conservatively.

- Gross structure collapse (S-STRUCT)
- Loss of coolant accident (S-LOCA)
- Shutdown rod drive (S-RPRDF-SRDM)
- Flap valves 003/004 (S-PCCVO-FLAP)

***** Seismic failure probability for SSC

Preliminary Quantification Result

* Risk quantification using AIMS-PSA

***** The Seismic event tree for HANARO

Hazard Analysis and Fragility Analysis

- * A seismic hazard curve presents the annual frequency (or rate) of exceedance for different values of a selected ground motion parameter (acceleration, velocity, etc.).
- *** HANARO seismic hazard curve**

***** The cut-off value was set to 1E-22

The preliminary quantification result.

- S-LOEP and S-STRUCT are the major contributor for all bins.
- S-LOEP is the scenario that LOEP is occur due to earthquake and major SSCs for accident mitigation is fail.
- The S-STRUCT is the structural destruction scenario, which is a scenario in which reactor building is damaged by earthquake.
- It is assumed that S-STRUCT leads do direct core damage conservatively.

scenario	Bin 1	Bin 2	Bin 3	Sum	%
S-STRUCT	5.406E-10	5.337E-08	2.423E-07	2.962E-07	41.82
S-LOEP	6.886E-09	1.253E-07	1.836E-07	3.159E-07	44.59
S-LOCA	2.790E-13	3.456E-09	9.277E-08	9.623E-08	13.59
Total	7.427E-09	1.822E-07	5.187E-07	7.083E-07	

Conclusions

- * The seismic level 1 PSA was performed on HANARO research reactor.
- The preliminary seismic PSA model was developed and evaluated using AIMS-PSA with conservative assumption.

- The preliminary quantification result (CDF result) was calculated as 7.083E-07/yr.
- S-LOEP, which is the loss of electric power due to earthquake, and S-STRUCT, which is the structural destruction scenario, accounts for the largest contributor among the scenarios.

Global Leader in Nuclear Safety Research ! Risk & Safety Research Division