Energy Deposition of a ZnWO₄ Thin-Film Scintillator for High-Resolution X-ray Imaging

Nuclear & Quantum Engineering

KAIST

Jaewoo Lee^a, Ju Hyuk Lee^a, Heon Yong Jeong^a, Taeyun Kim^{b,c}, and Sung Oh Cho^{a*}

^aDepartment of Nuclear and Quantum Engineering, KAIST, Daejeon, Republic of Korea ^bHANARO Utilization Division, KAERI, Daejeon, Republic of Korea ^cDepartment of Transdisciplinary Studies, Seoul National University, Seoul, Republic of Korea *Corresponding author: socho@kaist.ac.kr

Introduction

- **ZnWO₄** Inorganic Scintillator
 - High density and effective atomic number
 - Excellent mechanical and chemical properties^[1,2] \checkmark
 - Relatively high light yield (~10,000 photons/MeV)^[3] \checkmark
 - \rightarrow Can generate a significant number of photons
- **Characteristics Depending on Scintillator Thickness**
 - Scintillator thickness \rightarrow Image resolution^[4] \checkmark

V Comparison of thick scintillator and thin scintillator

	Thick scintillator	Thin scintillator	
Structure	Mesh-grid	Powder- type	Glass-type
Advantage	High sensitivity	Higher sensitivity Easy fabrication Flexibility	Higher sensitivity High spatial resolution High stability
Disadvantage	Grid size limitation Low reproducibility	Optical scattering ^[5]	Complex fabrication

Glass-type thin-film scintillator

Results & Discussion

▲ (a) Relationship between tube current and tube voltage at a fixed 50 W tube power and (b) calculated X-ray energy spectra at various tube voltage/current conditions

- Constant 50 W tube power: (Tube voltage) \propto (Tube current)⁻¹ \checkmark
- Changes in the number of electrons incident on the target
- (The number of electrons) \propto (Tube current) \rightarrow
- Two W characteristic X-rays near about 10 keV

\rightarrow High-resolution X-ray Imaging

Research Focus

- Investigate the energy deposition of a glass-type ZnWO₄ thin-film scintillator using the Monte Carlo N-Particle (MCNP) transport code
- \rightarrow X-ray tube with constant tube power for high-resolution X-ray imaging
- \rightarrow Various X-ray energy spectrum depending on tube current and tube voltage
- \rightarrow Energy absorption distribution

Methods

Geometry Construction

- X-ray tube (P030.24.12F100W, Petrick GmbH)
- Sealed with glass \rightarrow
- Filled with vacuum
- Tungsten target and beryllium window \rightarrow
- Scintillator (Φ 15 mm, 3 μ m) \checkmark
- → Thickness $t = \frac{sl}{M^2 D} = 3 \mu m$, where *s*: detector pixel size (6.5 μm)
 - *l*: distance between lens and detector (21 cm) *M*: magnification (8) *D*: diameter of the lens (0.75 cm)
- Deposited on 1 mm quartz glass \rightarrow
- **Disk X-ray source**

- \rightarrow Not observed at the 10 kV_p/5 mA case
- The higher the tube voltage, the more the number of X-ray photons
- Obtained by multiplying the number of electrons in each case \rightarrow
- ▼ The number of generated X-ray photons calculated from MCNP simulation

Tube voltage (kV _p)	Number of photons (s ⁻¹)
10	1.09×10^{11}
20	1.76×10^{11}
25	1.93×10^{11}
40	2.19×10^{11}
50	2.30×10^{11}

Deposited Energy in Scintillator

- ✓ Assumption: Absorbed energy → Light production
- The most energy absorption in the 20 kV_p case for the same number of particles (red line)
- The highest total deposited energy at the 50 kV_p (blue line)
- \rightarrow Due to different amount of photons
- The lower energy absorption rate as voltage increases (green line)
- \rightarrow Reasonably, 25 kV_n/2 mA case for high resolution

▲ (a) Energy deposition and (b) energy absorbed fraction of ZnWO₄ thin-film scintillator at various tube voltages

Conclusions

Energy deposition of the ZnWO₄ thin-film scintillator was analyzed using MCNP simulation for achieving high-resolution images

and (c) ZnWO₄ thin-film scintillator

X-ray Tube

Object

Magnification

Scintillator

- 0 (void)

- The energy deposited in the scintillator increased as the tube voltage is higher, but energy absorption fraction was decreased
- It is necessary to obtain a reasonable tube voltage condition that can exhibit the best image resolution by reflecting both energy absorption and absorbed fraction

Acknowledgement

This work was supported by the National Research Foundation (No. 2020M2D8A2069727).

References

[1] V.B. Mikhailik and H. Kraus, *J. Appl. Phys.*, 97, 083523 (2005). [2] P. Belli et al., Nucl. Instrum. Methods Phys. Res. A, 626-627, 31-38 (2011). [3] C. Grupen and I. Buyat (eds.), Handbook of Particle Detection and Imaging, Springer (2012). [4] Z. Yongxin *et al.*, *Nuclear Techniques*, 37(7), 6 (2014). [5] M. Nikl, *Meas. Sci. Technol.*, 17, 37-54 (2006).