2021 Korean Nuclear Society Autumn Meeting Changwon, Korea, October

Estimation of the Strength of Neutron Source Needed for a Nuclear Fuel Rod Scanner by the 1-D Simulation Model

Byung-Hoon Oh^{1)*}, Sung-Kyu Park ²⁾, Mun-Seog Baik²⁾, Sun-Kyo Chung³⁾, Woong Oh¹⁾, Hee-Jong Lee¹⁾, Jun-Hyun Park¹⁾

¹⁾Standard Testing & Engineering Inc., ²⁾KEPCO Nuclear Fuel, ³⁾Hanyang University, *Corresponding author: bhoh@stdte.co.kr

- 7. 결론
- 6. 중성자발생장치에 의한 검사장비 구현 조건
- 5. Cf-252 적정선량 평가
- 4. 운영장비의 운전조건 평가
- 3. 핵연료검사장비 1-D model
- 2. 연구동기 및 목표
- 1. 핵연료 검사장비 개요

발표순서

1. 핵연료 검사장비 개요

▶ 핵연료검사장비 (한국핵연료주식회사) 구성도

핵연료검사장비 (한국핵연료주식회사) 운영 현황

- 핵연료 제조라인에서 핵연료봉 조립후 내부검사 QA 에 적용하고 있음
- 펠렛 농축도 이상과 펠렛 조립 상태를 비파괴 방법에 의한 최종확인
- 중성자원으로 Cf-252 사용
- Delayed gamma 선 발생율 측정은 BGO detector 와 MCS 를 사용

1. 핵연료 검사장비 개요

▶ 핵연료주식회사 검사장비에 의한 핵연료봉 검사결과 (예)

2. 연구동기 및 목표

> Californium-252 (2.645 y half-life)

- 미국 ORNL / 러시아 RIAR 에서만 생산 (전 세계수요의 70% 를 ORNL 에서 공급)
- 최근 생산설비의 운영방식 등의 변화로 Cf-252 가격 급격히 증가
- 향후 가능한 생산/판매 콘소시움의 변화는 추가 가격상승의 요인이 될 수 있음

▶ Cf-252 최근 가격 동향

"Production, Distribution, and Applications of Californium-252 Neutron Sources" R. C. Martin, J. B. Knauer, and P. A. Balo

* US Army Contract # W911S8-14-P-0029

> 회사 차원에서의 Cf-252 품귀현상 대처 방안 검토

- Cf-252 교체 주기 2년 (중요한 QA 방법 중 하나)
- 현재 장비 성능개선 가능성
- 중성자발생장치에 의한 Cf-252 대체 가능성

▶ 기존의 관련 연구

- 도입장비의 설계 자료 검토 중심 (국내)
- MCNP 에 의한 중성자분포 정적 특성 (PNL*)

* Phoenix Nuclear Lab. (0)

- 현재 장비를 정확하게 예측할 수 있는 지발감마선 계측결과 중심의 시뮬레이션 모델 개발
 - ≻ 운전조건에 따른 출력 시뮬레이션 결과에 의한 대처방안 제시

3. 핵연료 검사장비 1-D model

▶ 핵연료 검사장비 1–D model 구성 방향

1. 장비 동적특성의 정확한 반영 (핵연료는 축방향으로 직선 이동)

- 핵연료 이동 속도 (scanning speed)
- MCS (multichannel scaler) bin time
- 중성자 조사구간/ 지발감마선 측정 시간 구별
- 2. 중성자 에너지는 two group(thermal/fast)으로 단순화
- 3. Delayed gamma 선의 시간에 따른 감쇠율 반영- SAND2015-7024 (2015) 핵 데이터 사용

- "Delayed Fission Gamma-ray Characteristics of ²³⁵Th, ²³³U, ²³⁵U, ²³⁸U, and ²³⁹Pu"

- 4. 계측기에서 측정되는 시간에 따른 <mark>감마선 계측수를 평가</mark>
- 5. 동특성 등을 0.01 sec 간격으로 *Excel Sheet* 안에서 구현

<Program Flow Chart>

<Parameters of 1-D Simulation Model>

input parameter	 neutron source strength calculation time-step ²³⁵U concentration
output parameter	 gamma-ray counting
variables	 neutron source position irradiation length scan speed moderation structure
1 dimensional	· calculation at a z-axis
pellet	\cdot material oxidized ²³⁵ U, ²³⁸ U
²⁵² Cf n E spectrum	 two group (thermal/fast)
Nuclear data library	· SAND2015-7024

3. 핵연료 검사장비 1-D model

▶ 핵연료 검사장비 1–D model 입력 파라메타(예)

	thermal neutron flux (n/cm²/s)	1.00E+06				
	fast neutron flux to thernal neutron flux	1.00				
	moving speed (cm/sec) ;scan time	6.00				
	effective irradiation length(cm)	20.00				
	U25 concentration(%)	2.00				
	pellet diameter (cm)	0.826				
	pellet length (cm)	0.991				
	pellet density (g/cm ³) ; ρ	10.44				
	molecular weight of UO2 (M)	269.978662				
	molecular density of UO2 (No. of mo./cm ³); $N=N_a*\rho/M$	2.32869E+22				
	volume of a pellet (cm ³)	0.531035482				
	pellet material (UO ₂) 한개 중 No. of U25 atom per cm ³	2.47323E+20				
	pellet material (UO ₂) 한개 중 No. of U28 atom per cm ³	1.21189E+22				
	fission numbers in cm ³ during 1 sec		N(number of atoms per cm ³)= (density)*N ₂ /M	F(fission per cm ³ /s) = l(neutrons/cm²/s)Nσ		
1-D 2-group model	U25 thermal neutron X section(barn)	at 0.1eV	250			
, j , _ , _ , _ , _ , _ , _ , _ , _ , _ , _	U25 fast neutron X section(barn)	at 2 MeV	1			
	U28 thermal neutron X section(barn)	at 0.1eV	1.00E-05			
	U28 fast neutron X section(barn)	at 2 MeV	7.00E-01			
	fission numbers during 1 sec					
	U25 thermal fission	6.18E+04				
	U25 fast fission	2.47E+02				
	U28 thermal fission	1.21E-01				
	U28 fast fission	8.48E+03				
	total	7.06E+04				
	irradiation time	3.33E+00				
				detection distances (cm)		
	total fissions during irradiation time			half distance of moderator area	(ceter to exit)	27.94
	U25 thermal fission	2.06E+05		from cener to 1st Detector		87.354
	U25 fast fission	8.24E+02		btwn Detector to Detector		3.703
	U28 thermal fission	4.04E-01		length of detector collimator		1.0
	U28 fast fission	2.83E+04		detector passing time (sec)		1.0
	total	2.35E+05				

▶ 1-D model 검증 simulation 결과

- scanning speed 에 따른 counting 수 변화 비교

scan speed (m/min)	scan speed (cm/sec)	D1	D2	D3	D4	total
0.3	0.5	1.250E+04	1.197E+04	1.144E+04	1.091E+04	4.683E+04
0.6	1	1.316E+04	1.260E+04	1.204E+04	1.147E+04	4.926E+04
0.9	1.5	1.340E+04	1.283E+04	1.231E+04	1.182E+04	5.036E+04
1.2	2	1.343E+04	1.289E+04	1.238E+04	1.190E+04	5.059E+04
1.5	2.5	1.340E+04	1.287E+04	1.237E+04	1.188E+04	5.052E+04
1.8	3	1.326E+04	1.274E+04	1.225E+04	1.180E+04	5.006E+04
2.4	4	1.302E+04	1.253E+04	1.207E+04	1.164E+04	4.927E+04
3	5	1.275E+04	1.229E+04	1.185E+04	1.144E+04	4.834E+04
3.6	6	1.262E+04	1.212E+04	1.166E+04	1.124E+04	4.764E+04

4. 현재 운영장비의 운전조건 평가

▶ 현재 운영장비의 실제 계측결과 (²⁵²Cf strength 4.83 x 10⁹ n/s)

Fuel Concentration

- ²³⁵U 농축도 ; 1.71%, 2.0%, 2.2%, 3.14%, 4.65%에서 D1 측정수 기준
- 각 detector의 Discriminator level은 고정됨
- D1, D2, D3 변화 크기는 각 detector discriminator level에 다라 달라짐
- D1 discriminator level이 고정되면 순수측정수 변화크기는 Delayed gamma 선의 변화크기와 동일함

```
➡ 위의 결과와 비교하기 위한 1-D 시뮬레이션 결과 도출에 의해
현재 가동장비의 n<sub>th</sub>/n<sub>fast</sub> 와 계측시스템 효율을 평가
```


< 현재 운영장비 계측결과 >

4. 운영장비의 운전조건 평가

▶ 1-D model 에 의한 운영장비 n_{th}/n_{fast} 및 계측기 효율 평가

n_{th}/n_f에 따른 서로다른 농축도의 펠렛당 측정수 변화

STANDAI

U²³⁵ 농축도 1.17% 핵연료봉의 D1 계측수 기준

농축도	$n_{tb}/n_f = 0.1$	$n_{th}/n_{f} = 0.2$	$n_{th}/n_f = 0.5$	$n_{th}/n_f = 1.0$	$n_{tb}/n_f = 10$	measure
1.71	2,700	2,700	2,700	2,700	2,700	<u>(2,700</u>)
2.00	2,830	2,902	3,004	3,066	3,147	2,900
2.20	2,919	3,042	3,214	3,318	3,455	3,100
3.14	3,340	3,698	4,201	4,504	4,903	3,750
4.65	4,016	4,752	5,787	6,409	7,230	4,400′
detector efficiency	0.31692	0.26924	0.20228	0.16200	0.10881	

5. 운영장비에서의 Cf-252 적정선량 평가

➢ ²⁵²Cf source 의 세기를 2x10⁹ n/s 로 하였을 때

농축도	$n_{th}/n_f = 0.1$	$n_{th}/n_f = 0.2$	$n_{th}/n_f = 0.5$	$n_{th}/n_f = 1.0$	$n_{th}/n_f = 10$	measure
1.71	1,058	1,246	1,658	2,070	3,083	2,700
2.00	1,109	1,339	1,845	2,351	3,593	2,900
2.20	1,144	1,404	1,974	2,544	3,944	3,100
3.14	1,309	1,706	2,580	3,454	5,598	3,750
4.65	1,574	2,193	3,554	4,914	8,255	4,400
detector efficiency	0.30000	0.30000	0.30000	0.30000	0.30000	

5. Cf-252 적정선량 평가

➢ ²⁵²Cf source 의 세기를 1x10⁹ n/s 로 하였을 때 ; n_{th}/n_f=1.0 이상

농축도	$n_{th}/n_f = 0.1$	$n_{th}/n_f = 0.2$	$n_{th}/n_f = 0.5$	$n_{th}/n_f = 1.0$	$n_{th}/n_f = 10$	measure
1.71	529	623	829	1,035	1,541	2 <u>,700</u>
2.00	555	670	923	1,175	1,796	2,900
2.20	572	702	987	1,272	1,972	3,100
3.14	655	853	1,290	1,727	2,799	3,750
4.65	787	1,096	1,777	2,457	4,127	4,400
detector efficiency	0.30000	0.30000	0.30000	0.30000	0.30000	

5. Cf-252 적정선량 평가

➢ ²⁵²Cf source 의 세기를 1x10⁸ n/s 로 하였을 때

농축도	$n_{th}/n_f = 0.1$	$n_{th}/n_f = 0.2$	$n_{th}/n_f = 0.5$	$n_{th}/n_f = 1.0$	$n_{th}/n_f = 10$	measure
1.71	53	62	83	104	154	2,700
2.00	55	67	92	118	180	2,900
2.20	57	70	99	127	197	3,100
3.14	65	85	129	173	280	3,750
4.65	79	110	178	246	413	4,400
detector efficiency	0.30000	0.30000	0.30000	0.30000	0.30000	

n_{th}/n_f에 따른 서로다른 농축도의 펠렛당

STANDARD

▶ 시뮬레이션에 의한 설계 검사장비 시스템 검증이 반드시 필요

- 5x10⁹ n/s 이상 중성자발생율 확보
- 발생장치 최근접 열중성자 확보를 위한 중성자 타겟 주변 재질의 선택
- 연속 운전 안정성 확보

핵연료검사장비를 위한 중성자발생장치 성능조건

total neutron flux (n/cm²-sec)

▶ 중성자발생장치를 적용한 PNL 핵연료검사장비에서의 중성자 에너지 분포

* US Patent, US 2017/0358375

5. 중성자발생장치에 의한 장비 구현조건

- 중성자원을 이용한 핵연료검사장비의 최종출력인 지발감마선 계측 결과를 시뮬레이션할 수 있는 1-D 시뮬레이션 툴을 개발/ 검증
- ▶ 개발된 1-D 시뮬레이션 툴에 의해 운영중인 검사장비 평가한 결과
 - 현재 운전조건에서 n_{th}/n_{fast} 값은 0.2, 계측기 효율은 30 % 수준
 - 현재 운전조건에서 소스 세기 2x10⁹ n/s 까지는 검사에 필요한 계측수 확보 가능
 - ²⁵²Cf 주변 감속재의 보강에 의해 1x10⁹ n/s 까지 운전 가능성
- > 중성자발생장치에 의한 핵연료검사장비의 구현을 위해서는
 - 중성자발생률 최소 5x10⁹ n/s 가 필요
 - 타겟 주변 감속재 구조물의 최적 배치가 필수적
- 향후 핵연료검사장비의 효율적인 설계 및 운영을 위해서는 본 연구 에서 개발한 1-D 시뮬레이션 툴의 활용이 유용할 것임

A New Method for Analyzing Special Nuclear Material in the Differential Die-Away Device

Byung-Hoon Oh^{*}, Woong Oh, Hee-Jong Lee, Jun-Hyun Park

Standard Testing & Engineering Inc *Corresponding author: bhoh@stdte.co.kr

< DDA 기법기반 특정핵물질 탐지장비 개념도 >

▶ 현재 개발된 DDA 기법기반 특정핵물질 탐지장비의 문제점

- 핵분열중성자 측정에 의한 핵물질 탐지
- 현재 핵물질 종류를 분석하기 위해서 추가로 delayed neutron spectrum 분석시스템을 사용하고 있음

STANDAR

- 그러나 이 방법은 delayed neutron 발생률이 fission 사건 발생직후 시간에 따라 급속히 감소하기 때문에
- spectrum 분석에 필요한 데이터를 얻는데 시간이 많이 소요되고,
- 또한 주변 구조물에 의해 감마선 에너지 변화가 많이 발생하면서 정확한 핵종평가가 어려운 것이 현실임

<지발감마선 에너지 분석에 의한 핵종분석 (현재 방법)> T. Nicol et al. / Nuclear Instruments and Me

235U 1,00E+01 239Pu yelds (%) 1,00E-01 Thermal fission 1,00E-03 1,00E-05 . 1,00E-07 60 100 80 120 140 160 180 Mass number

Fig. 1. Distribution of the cumulative thermal fission yields (fraction of fission fragment produced directly and via decay of precursors par 100 fissions induced by thermal neutrons) as a function of mass number, from JEFF3.1 database.

Fig. 7. Zoom on the regions of interest of Fig. 5, for different acquisition times (optimized as a function of the radioactive period of each delayed gamma emitter).

본 연구에서는 delayed gamma 발생률이 급격히 변화하는 구간에서 delayed gamma 선의 강도변화를 빠르게 추적해서, 감쇄률의 차이에 의해 서로 다른 핵종을 구별할 수 있는 새로운 방법을 제시하고 있음

86

감사합니다.

