2021 KNS autumn, Oct. 20-22, 2021, Online

The effect of pre-processing with various holding times on hydrogen permeation experiements

S. K. Son^a, S. C. Park^a, Y. H. Park^a, M.Y. Ahn^a, S. Cho^a

^a Korea Institute of Fusion energy(KFE), Daejeon, Rep. of Korea

1. Introduction

- 2. Experimental Description
- 3. Experimental Results
- 4. Summary

1. Introduction

- Permeation of hydrogen isotopes inevitably occurs due to high-temperature operation in fusion reactor.
- Transport and inventory of hydrogen isotopes are important as safety, fueling and reliability in fusion reactor design.
- One of hydrogen isotopes, tritium is radioactive and has strong permeation through materials.
- To minimize permeation of hydrogen isotopes, permeation properties of structural materials are essential as input data for numerical anlysis.

2 / 17

1. Introduction

- Stainless steel 316L where well known as structural material was chosen as sample.
- Its permeation properties have been established, but some literatures show the scatterd data.
- Permeation test is affected by experimental procedures and environmental conditions
- Oxidiztion layer or existence hydroxyl impacts the permeability
- To remove them, pre-pocessing was considerd and applied with various holding times.
- Both sides of sample were exposed with hydrogen atmosphere in the pre-processing.

3 / 17

- 1. Introduction
- 2. Experimental Description
- 3. Experimental Results
- 4. Summary

HYPER was installed and it is in operation at KFE.

【 [] 긴 독시 집 근

- Hydrogen permeation experimental facility(called HYPER)
- To investigate permeation properties of structual materials on diversed atmosphere such as H2, D2, etc.
- For proper permeation procedure, various commissionings are in progress

- HYPER was installed and it is in operation at KFE.
 - In-box type for protecting leakage from H2 or D2, contamination by ambient space
 - 4 pressure gauges, 1 thermocouple, at each side
 - 2 thermocouples at test section(to sample)

Equations for permeability, diffusivity and solubility

$$J = \frac{DK}{d} \left(p_{h}^{\frac{1}{2}} - p_{1}^{\frac{1}{2}} \right)$$

$$\rightarrow \frac{DK}{d} p_{h}^{\frac{1}{2}} \quad :DK = \Phi$$

$$\rightarrow \frac{\Phi}{d} p_{h}^{\frac{1}{2}}$$

$$t_{1} = \frac{d^{2}}{6D}$$

$$\rightarrow D = \frac{d^{2}}{6t_{1}}$$

Symbol	Unit	Description
J	$\frac{\text{mol}}{\text{m}^2 \text{ s}}$	Rate of gas permeation per unit area
d	m	Thickness of material
P _h	Ра	The gas pressure on the high pressure side
P ₁	Ра	The gas pressure on the low pressure side \approx High vacuum, equal to 0
D	$\frac{m^2}{s}$	Diffusion coefficient of material
K	$\frac{\text{mol}}{m^3 \sqrt{Pa}}$	Sieverts' constant of material
Φ	$\frac{\text{mol}}{m s \sqrt{Pa}}$	permeation coefficient of material
t ₁	S	Time lag from pressure-sec curve (slope and intercept)

Figure 2-10. Typical permeation experiment data analyzed using Time Lag Method.

한국핵융합에너지연구원 단종 한국사업단

The permeability coefficient P is calculated from the slope found in Fig.1 within the steady-state region.*

A common error in using this method(time lag) is not allowing enough time to establish steady state.**

* Ref) Pechar T.W. (2004) Fabrication and Characterization of Polyimide-based Mixed Matrix Membranes for Gas Separations, Ph.D. Thesis, Virginia Polytechnic and State University, Blacksburg, VA, 334 pages.

** Ref) Paul D.R. (2016) Time Lag Method for Mass Transport Properties Evaluation in GS., Encyclopedia of Membranes., Berlin, Heidelberg.

2021 KNS autumn, Oct. 20-22, 2021, Online 8 /

Sample information

- Material : 316L stainless steel
- Thickness : 0.7mm / Diameter : 19.8 mm
- Both surfaces were polished as in the following figure.
- Conditions for pre-processing
 - Pressure : 100 kPa on the feed side, 100 kPa on the permeate side
 - Sample temperature : 500°C
 - Hold time : 0, 1, 2, 3, 4, 6, 12 hr
- Conditions for permeation experiments
 - Pressure : 100 kPa on the feed side,
 - ~10⁻⁶ Pa on the permeate side as minimum
 - Sample temperature : 500°C

- 1. Introduction
- 2. Experimental Description
- 3. Experimental Results
- 4. Summary

- Pressure rise data
 - Results without the pre-processing show significant differences among the results.
 - Bare SS316L could contain an error in permeability.

Slope and time-lag data

- Results without pre-processing show significantly differences among the results.
- The slopes, indicating permeation rates, increase as the holding time increase up to 3 hours and then they are saturated.
- The discrepancy of the time lags at each holding time tends to become small.
- It suggests that the pre-processing more than 2 hours is necessary to obtain consistent permeation data.

Checking permeation parameter - Temperature on permeate side

- thermal anlysis result : Avg. volume temp ; 45.8° C (on permeate side volume)
- Thermocouple value(actual) : \approx room temperature

- 1. Introduction
- 2. Experimental Description
- 3. Experimental Results
- 4. Summary

4. Summary

- Permeation test facility(HYPER) is in operation at the KFE.
- The pre-processing for permeation experiment were conducted using HYPER.
- Permeation test without pre-processing could contain an error in properties of permeation.
- Sufficient holding time is necessary to reduce discrepancy in permeation tests.
 As the results, 3 hours of holding time have been decided
- Further study is expected to elaborate on reliability improvement for diffusivity and solubility using HYPER
- Also, this procedure will be tested to advanced reduced-activation alloy(ARAA) which is under developing for HCCR TBM application

Thank you for your attention !

