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 Modeling Requirements of the Proposed ECCS Rule Revision to 
Reflect High Burn-up Effect of Fuel
• Inner surface oxidation
• Thermal resistance of crud and oxide
• Fuel relocation, dispersal and flow path blockage due to deformation and burst of fuel

 FAMILY Code
• FAMILY : FRAPTRAN And MARS-KS Integrated for Safety AnaLYsis code
• Integrated code between fuel performance code, FRAPTRAN and system thermal-

hydraulic code, MARS-KS
• Fuel models including fuel relocation have been developed for audit calculation 

reflecting modeling requirements
 Validation of Fuel Relocation Model of FAMILY Code Using Halden

IFA-650.4 LOCA test 
• Fuel relocation : change of heat source distribution in a fuel rod after burst of fuel rod
• Halden IFA-650.4 LOCA test 

▫ Large deformation and relocation of fuel with high burnup condition
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 Test Rig
• Single rod experiment using high burnup fuel
• Heating provided within the rod by low level 

nuclear power simulating decay heat
• Simulation of the thermal boundary conditions 

with an insulating channel and heated shroud

Parameter Value

Effective fuel length [mm] 480

Fuel weight [kg UO2] 0.320

Burnup [MWd/kgU] 92.3

Theoretical fuel density [%] 95.2

Pellet length [mm] 11

Clad oxide thickness [㎛] mean 10 / max 11

Clad O.D. [mm] 10.75

Clad thickness [mm] 0.725

Flask I.D./O.D. [mm] 34/40

Electrical heater length [mm] 518

Target PCT [°C] 800

Major parameters

Schematics of test rig
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 Sequence of Test 
• Phase 1 (forced circulation)

▫ Test loop pressure : ~ 70 bar
▫ LHGR of fuel : ~ 10 W/cm
▫ LHGR of electrical heater : ~ 15 W/cm

• Phase 2 (natural circulation)
▫ Disconnection of the rig from the outer loop

• Phase 3 (blowdown)
▫ Opening of valves to the dump tank

• Phase 4 (heat-up)
▫ Peak cladding temperature : 1075 K
▫ Cladding burst : 336 s
▫ Start of spraying : 566 s

• Phase 5 (cooling)
▫ Reactor scram : 617 s

Simplified test loop
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 Evaluation Methods
• Computer codes

▫ FAMILY code: Transient calculation
▫ FRAPCON code: Providing initial conditions of pre-irradiated 

fuel rod 
• Applied models

▫ Fuel relocation model developed by Quantum 
Technology(QT)

▫ Models improved in previous studies 
- Linear heat generation model of QT fuel relocation model
- Axial fuel power model to reflect the history of decay heat

• Heat structure modeling
▫ Radiation heat transfers between fuel rod and electrical 

heater/between electrical heater and outer flask
- Emissivity of fuel assumed to be 0.8

Nodalization of Halden IFA-650.4 
test rig in FAMILY code
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• Fuel cladding temperature
▫ Increases continuously due to heat-up during blowdown phase
▫ Decreases rapidly after the fuel cladding burst 

- At the elevation of TCC1, there is no fuel producing heat
• Burst time of fuel rod was 

▫ Predicted to be earlier than experiment
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• Fuel cladding temperatures after burst 
▫ Decreases rapidly at higher elevation decreases rapidly 

- Fuel mass became 0
▫ Increases significantly at lower elevation  

- Fuel mass increase due to dropped fuel into the ballooned region
- Maximum fuel mass at the burst location: more than 5 times to the initial condition
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• Temperatures of TCH1 and TCH2 
▫ Lower before the occurrence of fuel cladding burst compared to test results

- Radiation heat transfer and boundary conditions of heat transfer through outer 
flask not identified well

▫ Predicted cooling rates after the burst comparatively well
- Dominantly depends on the boundary condition of heat transfer between 
heater and outer flask
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• Effect of Fuel Relocation Model
▫ Fuel cladding temperature decreases rapidly 

- No more fuel producing heat exists at higher location than fuel cladding burst

Fuel cladding temperature w or w/o relocation model application
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• Effect of Fuel Relocation Model
▫ Calculated by Cathcart-Powel cladding oxidation model

- Oxidation rate affected by the temperature
▫ Oxide thickness and ECR around the burst location

- w/ relocation : large due to high power
- w/o relocation : smaller due to direct convection heat transfer to the coolant 

Oxide thickness 
along axial direction

Cladding temperature just after burst
along axial direction

Equivalent clad reacted
along axial direction
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 Preliminary evaluation of fuel relocation model of FAMILY
code by the analysis of Halden IFA-650.4 LOCA test
• The fuel cladding temperature until reactor scram is predicted well by the 

application of fuel relocation model
• In terms of electrical heater, heat-up rate before the burst and cool-down 

rate after the reactor scram are predicted comparatively well
• Fuel relocation directly affects increasing oxide thickness and ECR due to 

changed power distribution

 As further studies
• Heat transfer characteristics including radiation and boundary conditions of 

heat structures needs to be investigated
• Effect of fuel parameters related with fuel deformation needs to be further 

studied
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