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1. INTRODUCTION 

 
Experimenting hypothetical nuclear power plant 

accidents is very challenging, thus many computational 

studies are being conducted. However, there are 

limitations to severe accident simulation using CFD 

(Computational Fluid Dynamics). Especially for two-

phase flow, improving prediction accuracy of CFD 

requires special effort due to complexity and non-

linearity. However, a CFD approach to modeling 

complex two-phase flows is becoming important for 

predicting the consequences of severe accidents. In order 

to overcome the existing limitations of CFD, more and 

more efforts are being made to apply machine learning 

to CFD. Kwon et al. [1] made a machine learning 

approach for heat transfer correlation. Maulik et al. [2] 

applied deep leaning to OpenFOAM and confirmed the 

possibility of using complicated neural architectures for 

practical CFD problems. Machine learning-based data 

analysis can predict outputs based on existing data, 

which can contribute to accurately predicting two-phase 

flows. 

Therefore, this study presents an attempt to develop a 

physical model for CFD simulation using machine 

learning techniques. In particular, by applying the 

developed model to a subcooled boiling CFD simulation, 

the physical model of CFD is evaluated and machine 

learning applicability is reviewed. This will lead to the 

development of better prevention and mitigation 

strategies for serious accidents in nuclear power plants. 

 

 
Fig 1. Illustration of subcooled boiling flow in a vertical 

uniformly heated tube [3]. 

 

2. METHODOLOGY 

 

2.1 Methodology 

 

First, a target physical model is selected. The wall heat 

transfer model used in the CFD code is generally RPI 

model [4]. Then, it is necessary to generate data for 

model training. ANN (Artificial neural network) is used 

as the machine learning technique. The ANN consists of 

an input layer, hidden layers, and an output layer. This 

has the advantage that even if each input parameter has a 

non-linear relation it can be expressed as a relational 

expression. An appropriate parameter selection for input 

is important to improve the accuracy of machine learning 

model. As the number of parameters increases, the 

amount of data and time required for learning increases. 

In addition, parameters correlated with output should be 

selected. Therefore, the appropriate range of parameters 

and datasets must be determined. After setting the input 

parameter and range, data was generated through 

numerical simulations. Random data is generated via 

MATLAB and REFPROP by setting an appropriate 

range of parameters. Based on this data, model training 

was proceeded. Model training improves accuracy while 

adjusting the hyperparameter. Lastly, the machine 

learning model will be validated and evaluated through 

the test set. 

 

 
Fig 2. ANN model structure 

 

2.2 RPI wall boiling model 

 

The Rensselaer Polytechnic Institute(RPI) wall 

boiling model proposed by Kurul and Podowski [4] 

describes the wall boiling of subcooled boiling and is 

mainly used in commercial CFD code. The RPI wall 

boiling model is based on the heat flux partitioning 

model, and the total heat flux from wall to the fluid (𝑞𝑤
" ) 

is consisted of convective heat flux (𝑞𝑐
"), quenching heat 

flux (𝑞𝑞
" ) and evaporative heat flux(𝑞𝑒

" ). 

 

𝑞𝑤
" =  𝑞𝑐

" + 𝑞𝑞
" + 𝑞𝑒

"    (1) 
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Fig 3. RPI partitioning model 

 

The convective heat flux, qw
” is quantified by the 

convective heat transfer between single liquid phase and 

heated wall surface that is not covered by the attached 

nucleating bubbles [3]. The qc
” is expressed by 

  

𝑞𝑐
" =  ℎ𝑐(𝑇𝑤 − 𝑇𝑙)(1 − 𝐴𝑏)  (2) 

Where the Tw is the wall temperature, Tl is liquid 

temperature, hc is single phase heat transfer coefficient, 

and Ab is the proportion of heated wall covered by 

nucleating bubbles, estimated by 

  

𝐴𝑏 = min (1, 𝐾
𝑁𝑤𝜋𝑑𝑤

2

4
  )  (3) 

where K is an empirical constant estimated by Del Valle 

and Kenning equation [6] 

K = 4.8 exp (−
𝜌𝑙𝑐𝑝,𝑙(𝑇𝑤−𝑇𝑙)

80𝜌𝑔ℎ𝑓𝑔
)   (4) 

Nw is the active nucleate site density, and given by 

Lemmert and Chawla model [7] 

𝑁𝑤 =  2101.805(𝑇𝑤 − 𝑇𝑙)
1.805    (5) 

dw is the bubble departure diameter, and given by 

Tolubinsky- Kostanchuk model [8] 

𝑑𝑤 = min (0.0006𝑒(−
∆𝑇𝑠𝑢𝑏

45.0
), 0.0014)     (6) 

where ∆𝑇𝑠𝑢𝑏 =  𝑇𝑠𝑎𝑡 − 𝑇𝑙 , 𝑇𝑠𝑎𝑡  is saturated temperature,  

𝜌𝑙  is liquid density,  𝜌𝑔  is vapor density, 𝑐𝑝,𝑙  is the 

specific heat of liquid and ℎ𝑓𝑔 is the latent heat.  

The quenching heat flux, 𝑞𝑞
"  is defined as the process of 

liquid cooling due to flow induced by bubbles departing 

from the wall. The 𝑞𝑞
"  is expressed as 

𝑞𝑞
" =  

2√𝑘𝑙𝜌𝑙𝑐𝑝,𝑙𝑓

√𝜋
(𝑇𝑤 − 𝑇𝑙)  (7) 

𝑓 is the frequency of bubble departure, given by Cole 

correlation [9] 

𝑓 =  √
4𝑔(𝜌𝑙−𝜌𝑔)

3𝑑𝑤𝜌𝑙
     (8) 

where kl  is the thermal conductivity of liquid phase, and 

g is the gravitational acceleration.  

The evaporative heat flux, 𝑞𝑒
"  is defined in the process of 

phase change from liquid to vapor. The 𝑞𝑒
"  is expressed 

as 

𝑞𝑒
" =  𝑉𝑑𝑁𝑤𝜌𝑔ℎ𝑓𝑔𝑓  (9) 

where Vd = 
𝜋𝑑𝑤

3

6
 is the volume of the bubbles based on the 

departure diameter. 

 

3. RESULT AND DISCUSSION 

 

Main variables of the RPI wall boiling model are P, Tw, 

Tl, vl, and Tsat, and those are the input parameters of the 

ANN. Output parameter is the total wall heat flux, 𝑞𝑤
" . 

The range of parameters are determined by experimental 

condition of B.J. Yun et al. [5], SUBO(Subcooled 

Boiling) experiment.  

Table 1. Range of input parameter (Case 1) [5] 

Parameters value Unit 

Pressure (P) 185-196.8 kPa 

Wall temperature (Tw) 400-450 K 

Liquid temperature (Tl) 363-423 K 

Liquid velocity (vl) 1.1415-2.1675 m/s 
 

In the RPI model, parameters and heat fluxes are related 

mostly non-linear. The total wall heat flux is proportional 

to the temperature difference, such as (Tw – Tl), (Tw – 

Tsat), and (Tl - Tsat) than using each temperature directly. 
Therefore, a model with P, vl, (Tw- Tl), (Tw- Tsat), (Tl- Tsat) 

as input parameters is developed and trained. The 

information of the ANN model is shown in Table 2. 

Table 2. ANN model information 

Input parameter number 5 

Output parameter number 1 

Hidden layer number 2 

Node number 50 

Epoch 300 

Learning rate 0.01 

Activate function ReLu 

Optimizer Adam 

Loss function MSE 
 

𝑅2 = 1 −
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖−𝑦𝑝𝑟𝑒𝑑,𝑖)2

∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖−𝑦𝑚𝑒𝑎𝑛)2  (10) 
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Fig 4. Total wall heat flux for test data (Case 1) 

 

The evaluation result of the ANN model for the range of 

Table 1. is shown in Fig.4. The accuracy of the model 

can also be evaluated through the R2 scores shown in Eq 

(10). As a result, R2 score is 0.9998, Maximum Absolute 

Percentage Error (MAPE) is 0.2616 and Maximum 

Absolute Error (MAXE) is 5.4477. 

 
Table 3. Range of input parameter (Case 2) 

 

Parameters value Unit 

Pressure (P) 185-300 kPa 

Wall temperature (Tw) 400-600 K 

Liquid temperature (Tl) 363-450 K 

Liquid velocity (vl) 1.1415-2.1675 m/s 

   

 
Fig 5. Total wall heat flux for test data (Case 2) 

 

Case 2 has a wider range than Case 1. Likewise, the 

result is shown in Fig.5. As a result, R2 score is 0.9997, 

MAPE is 1.5226 and MAXE is 98.7375. The results of 

each case are listed in Table 4. 

 

 

Table 4. Model accuracy and result  
Case 1 Case 2 

MAPE 0.2616 1.5226 

MAXE 5.4477 98.7375 

R2 score 0.9998 0.9997 

 

 

4. CONCLUSION AND FUTURE WORK 

 

In this study, the RPI model, which is the physical model 

of CFD wall heat transfer for two phase flow simulation, 

is expressed as an ANN model. This is to naturally 

improve the model with data for the future severe 

accident simulation. In particular, training data was 

generated using the data range of the SUBO experiment 

to simulate the subcooled boiling regime first. The main 

input parameters were identified as pressure, liquid 

velocity, wall temperature, liquid temperature, saturation 

temperature, and output is the total wall heat flux. It was 

found from the study that temperatures should not be 

used directly for inputs, but temperature difference 

should be used for better correlation. As a result, it was 

confirmed that the R2 score is above 0.99 in all cases. 

In the future, the developed ANN model will be applied 

to a CFD code and compare it with experimental data 

from CFD simulation. Connecting well-trained ANN 

model to CFD is expected to reduce the errors generated 

from real simulations, and it will enable the 

implementation of algorithms that can improve the 

performance of CFD naturally from the accumulation of 

data. During nuclear power plant severe accidents, 

various phenomena occur. Thus, the developed method 

can be applied to these phenomena as well to further 

improve the prediction accuracy. 
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