Application of Multi-Hole Structures to the HANARO Irradiation Capsule

Kee-Nam Choo^{a*}, Sung-Woo Yang^a, Seng-Jae Park^a Yoon-Taek Shin^a

^aKorea Atomic Energy Research Institute 111 Daedeok-daero, 989beon-gil, Yuseong-gu, Daejeon 34057, Korea *Corresponding author: knchoo@kaeri.re.kr

1. Introduction

The High Flux Advanced Neutron Application Reactor (HANARO) has been operating as a platform for basic nuclear research in Korea, and the functions of its systems have been improved continuously since its first criticality in February 1995 [1]. Various neutron irradiation facilities such as rabbit irradiation facilities, loop facilities, and capsule irradiation facilities for irradiation tests of nuclear materials and fuels have been developed at HANARO [2,3]. Among the irradiation facilities, the capsule is the most useful device for coping with the various test requirements at HANARO. Irradiation capsules have been developed and actively utilized for the irradiation tests requested by numerous users to support the national research and development programs on nuclear reactors and nuclear fuel cycle technology in Korea [1-3]. As a capsule design, 1-hole (centered) or 4-hole specimen allocation has been generally applied as standard structures of the irradiation capsule at HANARO.

Recently, HANARO was temporarily shut down for a long time for a safety reinforcement construction and due to several technical problems of the reactor. During the reactor stop, a number of user requests for neutron irradiation testing have accumulated at HANARO. Based on the accumulated user requests and an economic point of view of an expensive cost of the irradiation testing, a need for a multi-hole design of the capsule has been increased. 5 or 6-hole structured designs had been partially tried already in several capsules at HANARO. At present, a 6-hole structured capsule of the 16M-02K was designed and is under irradiation testing for an evaluation of the neutron irradiation properties of the Advanced Reduced Activation Alloy (ARRA) of a Fusion reactor.

In this paper, the progress and status of a development of a multi-hole irradiation capsule are described.

2. Design History of a Specimen Allocation in an Irradiation Capsule

A typical HANARO irradiation material capsule consists of three main parts: a protection tube (5 m), a guide tube (9.5 m), and the capsule's main body including specimens, as shown in Figure 1. The irradiation specimens are generally located in the center of the standard irradiation capsule. However, multi-hole designs of the specimens, as shown in Figure 2, have been frequently adopted in several capsules to increase an economic efficiency of the volume or to improve the uniformity of specimen temperature at HANARO.

Although a lot of 4-hole structured capsules have been successfully irradiated at HANARO [4,5], 5-hole and 6hole structured capsules were scarcely tested, as shown in Table 1. Therefore, the safety of those multi-hole capsules was not fully proved.

Fig. 1. HANARO irradiation capsule systems: (a) A standard irradiation capsule and (b) an irradiation capsule system installed in the reactor core.

Fig. 2. Cross sections of the irradiation capsules having different specimen-hole designs irradiated in HANARO.

Table I: Neutron irradiation capsules having multi-hole structures irradiated at HANARO

Capsule	Irradiation Condition	Specimen Design	Temp. Trend	
01M-05U	24MW CT	Zr, Ti alloy 6 hole	280~350°C	
05M-07U	30MW CT	Zr, Ti alloy 6 hole	292~344	
16M-02K	30MW CT	ARAA (Fe) 6 hole	300~329°C	
04M-22K 05M-06K	Out-pile test	STS (Fe) 5 hole	-	

ARAA: Advanced Reduced Activation Alloy

3. Temperature Analysis of the 16M-02K Capsule having a 6-Hole Design

A new capsule (16M-02K) having a 6-hole specimen allocation was designed, fabricated, and irradiated for an evaluation of the neutron irradiation properties of the Advanced Reduced Activation Alloy (ARRA) of a Fusion reactor. The irradiation temperature of the specimens was preliminary analyzed by using the GENGTC and compared to the results by the ANSYS codes [6], as shown in Table 2.

Table 2: Temperatures of the 16M-02K capsule at 30 MW
power

Stage	тс	GENGTC		ANSYS		Measured*			
		He 1atm	0.4K He	He 1atm	0.4K He	He 1atm	He 40torr		
1	TC1	201	281	198	<370	222	338		
	TC2	201	281	198	<370	214	332		
	TC3	230	312	204	<370	220	324		
	TC4	230	312	204	<370	215	310		
2	TC5	226	296	206	<441	218	312		
	TC6	243	305	220	<441	224	313		
3	TC7	245	303	282	369	230	334		
	TC8	245	303	282	369	232	337		
	TC9	265	329	274	369	231	311		
	TC11	265	329	274	369	225	288		
4	TC10	251	311	235	<369	242	315		
	TC13	241	303	217	<370	239	299		
5	TC12	233	300	211	<370	227	302		
	TC14	206	282	187	<370	221	300		
* Heater power 0, control rod at 468mm									

The temperature of the ARAA specimens was stably controlled in the range of 295-337°C during a reactor operation cycle(100th cycle) at HANARO. Considering the stable behavior of the specimen temperatures and design experience of the capsule, the 6-hole design could be safely applicable for an irradiation testing of the most Fe and Zr-based nuclear materials at HANARO.

4. Summary

The progress and status of a development of a multihole irradiation capsule at HANARO to increase an economic efficiency of the volume or to improve the uniformity of specimen temperature were summarized. The 6-hole structured capsule of the 16M-02K was designed, fabricated, and successfully irradiated for an evaluation of the neutron irradiation properties of the Advanced Reduced Activation Alloy (ARRA) of a Fusion reactor. Considering the stable behavior of the specimen temperatures and design experience of the capsule, the 6-hole design could be safely applicable for an irradiation testing of the most Fe and Zr-based nuclear materials at HANARO.

REFERENCES

[1] K.N. Choo, M.S. Cho, B.G. Kim, Y.H. Kang, and Y.K. Kim, "Material Irradiation at HANARO, Korea," Research Reactor Application for Materials under High Neutron Fluence, IAEA-TECDOC-1659, 2011, IAEA.

[2] K.N. Choo, M.S. Cho, S.W. Yang, and S.J. Park, "Contribution of HANARO Irradiation Technologies to National Nuclear R&D", *Nuclear Engineering and Technology*, **46**, 4, 501 (2014).

[3] M.S. Cho, et al., "Development of a low-temperature irradiation capsule for research reactor materials at HANARO", *Nucl. Technol.*, **193**, 330 (2016).

[4] K.N. Choo, et al., "Design, fabrication and irradiation test report on HANARO instrumented capsule (04M-17U) for the researches of universities in 2004", KAERI Technical Report, KAERI/TR-3178/2006, 2005.

[5] K.N. Choo, et al., "Design, fabrication and test report on HANARO instrumented capsule (08M-09K) for irradiation test of high temperature materials for Gen IV program", KAERI Technical Report, KAERI/TR-3782/2009, 2009.

[6] S.R. Kim, "Thermal design for an irradiation testing of the ARAA alloys", HANARO internal report, HAN-IC-CR-14-11, 2014. 8. 4.