Study on the Effect of Heatup Rate on Rupture Temperature Model of SPACE Code

Seung Wook Lee*, Chiwoong Choi and Kwi Seok Ha

Korea Atomic Energy Research Institute, 111 Daedeok-Daero 989 Beon-gil, Yuseong-gu, Daejeon, Korea *Tel: (82)42.868-8712 Fax: (82)42.868-4801 E-mail*: nuclist@kaeri.re.kr

Introduction

□Fuel Cladding Rupture Model of SPACE

- Based on NUREG-0630 model which is a function of hoop stress and heatup rate
- Instant heatup rate is sensitive to time step size and change of cladding temperature
- Considering complex thermal-hydraulic behavior during LOCA, instant heatup rate may be unstable, so

Example of Time-averaged Method

• max. $\Delta t = 0.2 s$, time interval for determining H.R = 1 s (number of elements, N = 10)

that prediction of rupture temperature would be wrong.

NUREG-0630 Model

$$T_R = 4233 - \frac{20.4 S}{1+H} - \frac{8.51 \times 10^6 S}{100(1+H) + 2790 S}$$

- T_R : rupture temperature (K)
- : engineering hoop stress (kpsi) S
- : heatup rate ratio, max(0, min(heat rate / 28 K/s)) H

Effect of FFRD on Rupture Model

- Fuel crumbling will reduce gap size, increase gap conductance and change cladding temperature.
- In code simulation, instant change of cladding temperature due to fuel crumbling will affect the heatup rate seriously.
- To avoid such an undesirable situation, time-averaged heatup rate model has been developed and implemented into SPACE.

Data will be removed next step

$$Avg.HR = \frac{\sum_{i=0}^{N} \Delta Tc_i}{\sum_{i=0}^{N} \Delta t_i} = \frac{8.1 K}{1.11 s} \cong 7.3 K/s$$

Simulation Results

Simulation Cases

Case	FFRD	Option	Duration (s)	
0	N/A	instant	_	
1	applied	instant	-	
2	applied	average	0.1	
3	applied	average	0.5	
4	applied	average	1.0	
5	applied	average	2.0	

Axial Temperature Distribution correction [K] -150 -200 -250 - T = 573 K = 873 K T = 1173 K = 1473 K -300 100 150 200 250 300 50

Axial position from bottom of fuel pellet stack [mm]

Summary of Simulation Results

Parameter	Case-0	Case-1	Case-2	Case-3	Case-4	Case-5
Time (s)	1158.6	1150.7	1150.7	1150.6	1158.7	1158.7
Tc (K)	981.1	937.3	937.2	935.5	981.4	981.4
Tr (K)	981.1	920.9	921.0	921.2	981.4	981.4
HS (kpsi)	12.42	13.25	13.24	13.24	12.40	12.40
HR (K/s)	5.4	-125.5	-6.5	2.36E-3	5.4	5.4

Experimental Data NRC-Studsvik LOCA Test 192

provides experimental data with well-controlled cladding wall temperature which is required for investigating the effect of heatup rate (5 K/s).

Apparatus of NRC-Studsvik test

Time-averaged Heatup Rate Model

$$\frac{\int_{0}^{T} W(t) \frac{\Delta Tc}{\Delta t} dt}{\int_{0}^{T} W(t) dt} = \frac{\int_{0}^{T} \frac{\Delta Tc}{\Delta t} dt}{\int_{0}^{T} dt} \cong \frac{\sum_{i=0}^{N} \left(\frac{\Delta Tc}{\Delta t}\right)_{i} \Delta t_{i}}{\sum_{i=0}^{N} \Delta t_{i}} = \frac{\sum_{i=0}^{N} \Delta Tc}{\sum_{i=0}^{N} \Delta t_{i}}$$
$$\frac{W(t) = 1}{W(t)}$$

 $\Delta T c_i$: change of cladding temperature at ith step Δt_i : time step size at ith step

N =

: Number of elements of array *max.time step size*

Conclusions

- Fuel cladding rupture temperature model of SPACE is strongly dependent on the heatup rate at rupture and when fuel rupture occurs together with fuel crumbling which causes drastic change of heatup rate.
- Time-averaged heatup rate model was newly implemented into SPACE for accurate estimation of heatup rate and it agreed well with measured heatup rate and busrt strain
- Recommended time duration for averaging is 1 second for this test.