

Formalism Study for Agent-based modeling in Nuclear Evacuation Simulation

Kyung Hee University

Geon Kim Gibeom Kim Gyunyoung Heo^{*}

01 Introduction

- Background
 - Disaster prevention
 - ✓ Structural measures : Visible structures. (Ex. radiation monitoring facilities, radioactive protective equipment.)
 - ✓ Non-structural measures : Invisible structures. (Ex. emergency planning zone(EPZ), evacuation time measurement.)
 - Society becomes more complex, non-structural measures are important.

01 Introduction

KHU

- Research Background
 - Defense-in-Depth
 - ✓ 5th level : off-site emergency preparedness/response \rightarrow not only safety(science) but also relax(feeling).
 - ✓ Relaxation will follow itself if safety net is faithful.
 - Disaster response
 - \checkmark IT industry : Plan to protect public safety by providing real-time situations in the disaster.^[1]
 - ✓ Focusing on providing real-time information, does not deal with the distinctiveness of nuclear facilities.
 - Emergency preparedness/response due to an accident in nuclear facilities
 - ✓ Massive scale, long-term progress, specific impact on people and environment.

01 Introduction

- Research Background nuclear emergency preparedness/response strategy
 - Radiological Environmental Report (RER)
 - ✓ Specific matters related to evacuate public or accident response are not mentioned.
 - Radiological emergency plan, level 3 PSA
 - ✓ Deterministic variable : source term, population distribution, exposure pathway, emergency-preparedness response.
 - ✓ Radiological Environmental Impact Assessment : not consider dynamic characteristics.
 - Purpose
 - ✓ Development of agent-based model for infrastructure elements involved in emergency-preparedness response.

• Problem definition

- Purpose of the evacuation model
 - \checkmark An evacuation model that considers infrastructure elements and expresses interaction
 - \checkmark Expression of the agent-based model using formalism

• Problem definition

- Agent-Based Model (ABM)
 - Computational model : explaining macroscopic phenomena through interaction with microscopic agents' actions.
 Macroscopic phenomena : difficult to simply explain massive and complex system in terms of elements, formulas, structures.
- Why ABM?
 - \checkmark Model capability : real world's movements and results made by individual agent's action.
 - \checkmark Realistic assumptions and intertwined relationships can be expressed by the model.
 - \checkmark Sufficient data can be collected to construct the model due to open source data.

• Problem definition

• Agent-Based Model (ABM) - agent

 \checkmark Concept similar to an object used in programming.

✓ But, it is capable of judging and making decisions on their own, at least simple actions according to conditions.

• Agent-Based Model (ABM) – behavioral rule

✓ Processes and consequences : An agent affects another agent or environment, or vice versa.

- Agent-Based Model (ABM) environment
 - ✓ Space : agents' actions, interactions take place between agents.
 - \checkmark Resources or restrictions : agents' decision-making and behavior.

• Problem definition

- Agent-Based Model (ABM)
 - \checkmark Microscopic agents : agent who acts on his or her own and interacts with other agents.
 - \checkmark Environment : an area where interaction takes place
 - ✓ Explaining agent's unique attributes and behavior
 - \checkmark Modeling by micro-level evacuation.
 - ✓ (Disadvantage) Complex interactions between agents are difficult for users to fully understand.

- Problem definition
 - Formalism
 - ✓ Well-defined expression of the ABM. (Useful for explaining social system models)
 - $\checkmark\,$ Agent's methodical approach is possible.
 - ✓ Representative example : discrete event system specification (DEVS).

KHU

- Discrete Event System Specification (DEVS)
 - Computational basis^[2]

✓ Discrete event models, other basic systems formalism (Discrete time, differential equations.)

 \checkmark Implementing behaviors expression.

• Statement of atomic model and coupled model.

 \checkmark Atomic model : internal interaction of each agent or environment.

- ✓ Coupled model : interaction between agents, between environments, or between agents and environments.
- Discrete system = (discrete state) + (event set).
- Systematization & visualization : easy to understand between agents.

O3 Case study

• Evacuation model

✓ One evacuee

- \checkmark One dimensional space
- ✓ 2 infrastructures (fire, blackout)
- Simulation condition

✓ Position =
$$x_i$$
 ($i = 1, ..., 100$)

$$\checkmark \overrightarrow{v_i} = \frac{dx_i(t)}{dt}$$

$$\checkmark T_{real} = 2 \times \sum_{i=1}^{100} \left(\frac{x_i}{v_0 + \overline{v_i}} \right) + I(t)$$

KHU

< Evacuation simulation model using 'Netlogo' ABM tool – including infrastructure >

KHU

03 Case study

- Simulation condition infrastructure
 - $\checkmark I_0 = 0$, $I(t) = I_0 + \sum T_{infra}$
 - $\checkmark \sum T_{infra} = \sum (T_f + T_b)$
 - T_f : time delay about fire infrastructure
 - T_b : time delay about blackout infrastructure

< Evacuation simulation model using 'Netlogo' ABM tool – including infrastructure >

KHU

03 Case study

• Formalism (DEVS) – Atomic model

- ✓ Upper : state's name , Lower : time advance function value.
- ✓ Dotted line : internal transition function
- ✓ Solid line : external transition function
- \checkmark Bold outlined ellipse : initial state of the model
- \checkmark Question mark : triggering event of the transition
- Formalism (DEVS) Coupled model

✓ IC : internal coupling

03 Case study

• Formulation

 $\checkmark Evacuee = < X, Y, (S_1, S_2, S_3), \delta_{int} >$

 \checkmark X: a set of input events (evacuation start)

 \checkmark *Y*: a set of output events (infrastructure start)

✓ S_n : a set of sequential states (S_1 : normal, S_2 : injured, S_3 : recovery)

✓ δ_{int} : an internal transition function (velocity)

< Atomic model >

KHI

03 Case study

• Formulation

 $\checkmark Infra = < Z, W, (Q_1, Q_2, Q_3), \delta_{int}, \lambda >$

 \checkmark *Z*: a set of input events (infrastructure start)

✓ *W*: a set of output events (infrastructure end)

✓ Q_n : a set of sequential states (Q_1 : safety, Q_2 : fire, Q_3 : blackout)

- ✓ δ_{int} : an internal transition function (T_{Infra})
- ✓ λ : an output function (loop end)

KHI

04 Conclusions & Discussions

• Future work

			
> 2021 KNS - NetLogo {C:#Users#Geon#Desktop} -			
File Edit Tools Zoom Tabs Help			
Interface Info Code			
Find… Check Procedures I I Indent automatically Code Tab in separate window		Evacuation start	
<pre> globals [human a b c d f] turtles-own [speed acceleration] to setup ;;[Setup] button (in interface) to evacuation ;;[Evacuation] button (in interface) ;; setting [Setup] button</pre>	^ 	Infra – velocity change Injured Normal Recovery	elocity chang
 to setup-road ;; 1. road setting - base to setup-patch ;; 2. road setting (2) - specific setting ;; setting [Evacuation] button 		$0.5 \overrightarrow{v_{NORM}}$	
to setup-humans ;; 1. agent setting - base to human-behavior ;; 1. agent setting - behavioral rule to infra ;; 1. agent-setting - infrastructure		? 10% probability ? 70% probability	
to go ;; 2. Evacuation start		② ? 50% probability	cture start
	~		→

KHU

04 Conclusions & Discussions

• Conclusions

- ✓ Agent-based model in evacuation situation was made.
- ✓ Advantages(visualization and formulation) were performed by DEVS model.
- ✓ Formalism will make it easier to obtain agents' states which are interacted each other.

• Discussions

- ✓ More infrastructure should be established. (Reality)
- \checkmark Evacuation dimensions should be increased.
- \checkmark Validity of a set of rules must be verified.

KNS 2021 Autumn meeting

Thank you

Geon Kim newlove27@khu.ac.kr

Gibeom Kim rlqja2177@gamil.com

Gyunyoung Heo* (Corresponding Author) <u>gheo@khu.ac.kr</u>

2021-10-20