

Transactions of the Korean Nuclear Society Autumn Meeting On-Line, Korea, October 20~ 22, 2021

A Characterization Study of Nuclear Reactors Through Xenon Isotopic Activity Ratios

Sang Woo Kim(KHU), Geon Hee Park, Yu Yeon Cho and Ser Gi Hong(HYU)

2021. 10. 21

Department of Nuclear Engineering, Hanyang University Computational Transport & Reactor Physics Laboratory

This work was supported by the Nuclear Safety Research Program through the KoFONS using the financial resource granted by the NSSC of the Republic of Korea.

Contents

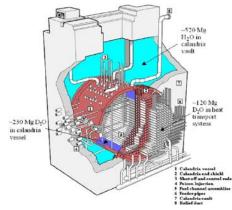
- 1. Introduction
- 2. Computational Method
- 3. Modeling of Reactors
- 4. Calculation ResultsUranium Enrichment
 - Reactor Type
 - After Shutdown

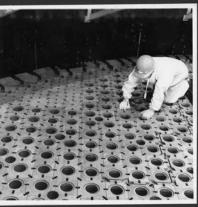
5. Conclusion

1. Introduction

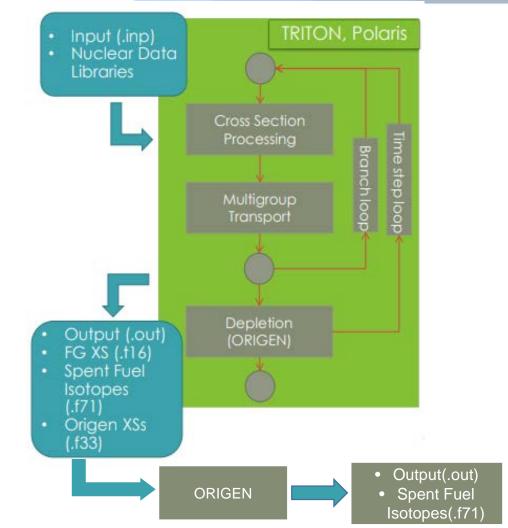
- So far, there have been six nuclear tests in neighboring countries, and despite the nuclear test ban treaty, continued nuclear activities can lead to nuclear threats, so many countries are keeping a close eye on their nuclear activities.
- Xenon isotopes and their isomers are the most likely observable radioactive signatures of nuclear test.
- They are collected in the atmosphere from control stations deployed through the International Monitoring System (IMS) established by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

[Fig. 1. IMS Station map established by CTBTO]



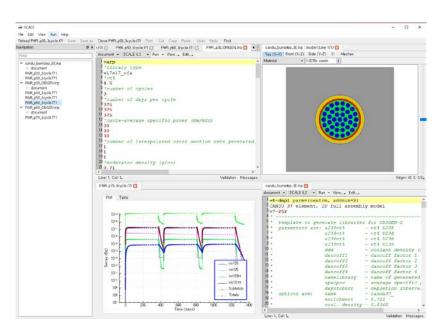

1. Introduction

- There are many possible facilities generating xenon isotopes such as different types of reactors and nuclear tests, which makes it difficult to identify the source of the xenon isotopic detection.
- Therefore, it is very important to devise a reliable indicator which can discriminate the source of xenon detection.
- Although there have been lots of researches in analyzing xenon isotopic characteristics, there are no comprehensive works on the xenon isotopic characteristics for various facilities in neighboring countries.
- The nuclear facilities operating in neighboring countries include IRT research reactor, nuclear fuel reprocessing facilities, uranium enrichment facilities, and 5MWe graphite reactor(MAGNOX) in Yongbyon.
- In this work, the characteristics of xenon isotopic activity ratios are analyzed and discussed in detail for the various reactors including PWR, CANDU, IRT-2000, and MAGNOX reactors.


[Fig. 2. Various nuclear reactor]

2. Computational Method


- In this work, TRITON and ORIGEN modules in SCALE6.2 were used to analyze the xenon isotopic characteristics for various reactor types.
- Several codes included in SCALE can be represented through a platform called Fulcrum.
- In this study, ORIGEN and TRITON codes were performed (Fig. 3)
 - TRITON generates one-group effective cross sections as a function of burnup, uranium enrichment, and so on through depletion calculation coupled with transport calculation.
 - ARP interpolates the effective one-group cross sections for a given parameter set.
 - ORIGEN performs the point depletion and decay calculations with the prepared onegroup effective cross section.


[Fig. 3. TRITON calculation sequence and follow- on ORIGEN calculation]

2. Computational Method

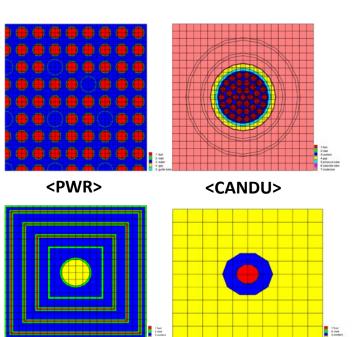
Scale: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design

[Fig. 4. SCALE]

[Fig. 5. SCALE Graphical User Interface - Fulcrum]

- SCALE 6.2 provides a user-friendly GUIs designed to create, modify, view and visualize input, output, and files.
 - Geometry models can be visualized for sequences that use KENO V, KENO-VI, Monaco, and NEWT
 - ORIGEN concentration file (f71) with integrated unit conversion (OPUS capability)

3. Modeling of Reactors


[Table 1. Specification of each reactor assembly]

Parameter	PWR	CANDU	IRT-2000	MAGNOX
Fuel assembly type	W17x17_ofa	Candu37	IRT-2M 3tube	MAGNOX
Number of Fuel pin	264	37	-	-
Fuel	1.5~6.0 wt% UO ₂	0.711 wt% UO ₂	36.15 wt% UO ₂	0.711 wt% U + 0.5 wt% Al
Cladding	Zircaloy-2	Zircaloy-2	AI	Mg - Al(0.8 wt%) + Be(0.03 wt%)
Moderator	H ₂ O	D_2O	H ₂ O	Graphite
Fuel pin diameter(cm)	0.7844	1.215	0.064	2.5
Clad thickness(cm)	0.05715	0.0465	0.064	0.05
Fuel density(g/cm ³)	10.516	10.6	2.63	18.17
Moderator density(g/cm ³)	0.71	0.836	1.0	1.628

- In this work, we considered the following reactors :
 - PWR (WH 17x17)
 - CANDU

<IRT-2000>

- IRT-2000
- MAGNOX (Yongbyon 5MWe graphite moderated reactor)

[Fig. 6. The reactors modeled with SCALE 6.2]

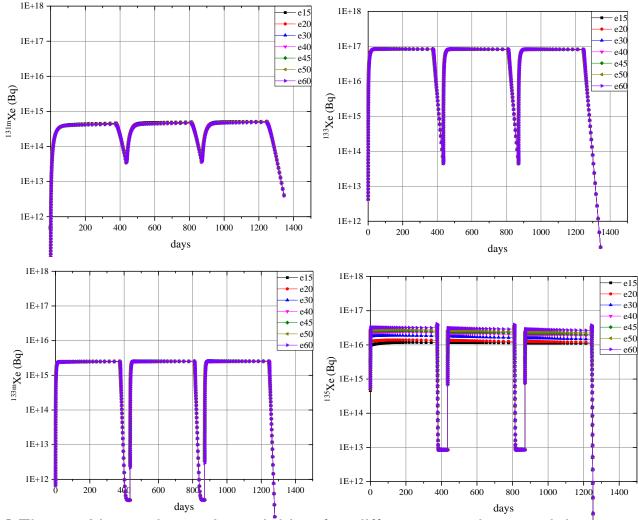
<MAGNOX>

악회

2021 추계학술발표회

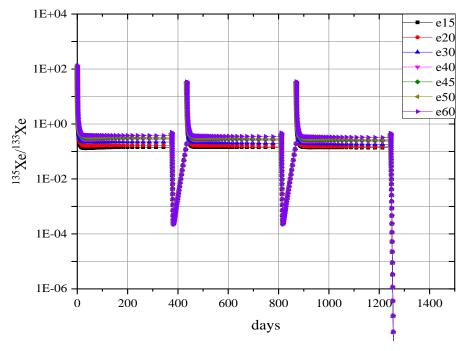
3. Modeling of Reactors

[Table 2. Burn data of each reactor in ORIGEN Calculation]


	PWR	CANDU	IRT-2000	MAGNOX
Burn Time (day)	375/60	700	350	4000
Number of Cycle	3	1	1	1
Specific power	40/0 004	19.5	557.1	0.502622
(<i>MW/t</i>)	40/0.004			
Burnup (<i>MWd/t</i>)	45,000	13,650	195,000	2,010
Cooling time after				
shutdown (day)			100	

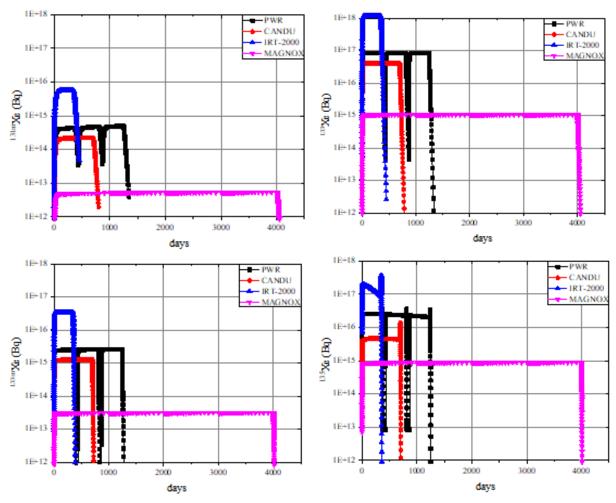
- ✤ Table 2 summarizes the conditions for depletion calculation including decay.
- The depletion calculation was performed using ORIGEN with the CRAM (Chebyshev rational approximation method) solver option.
- ✤ Initial the masses of uranium in all cases are normalized to 1 ton.
- ✤ The number of depletion calculation time steps including decay calculation : 600
- ✤ The decay calculation after shutdown was performed up to cooling period of 100 days.

4. Calculation Results (PWR, Xenon Isotope Radioactivity)


[Fig. 7. Xenon isotopic activities for different uranium enrichments]

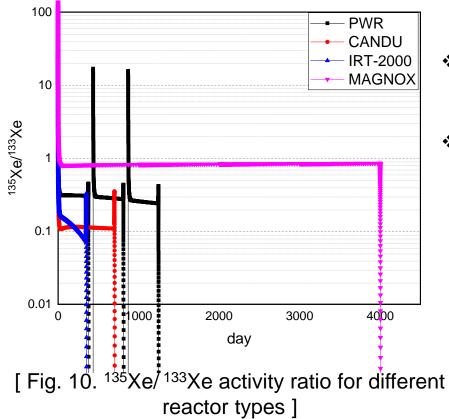
- ¹³⁵Xe radioactivity increases as uranium enrichment while the others' radioactivities do not change so much :
 - Higher enrichment → lower thermal flux → lower thermal neutron absorption by ¹³⁵Xe → higher ¹³⁵Xe concentration.
- After shutdown, ¹³⁵Xe increases for ~10 hours due to the decay of I-135.

4. Calculation Results (PWR, Xenon Isotope Radioactivity Ratios)

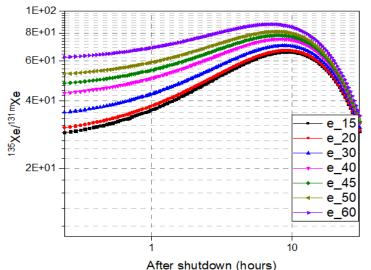

[Fig. 8. ¹³⁵Xe/¹³³Xe activity ratio for different uranium enrichments]

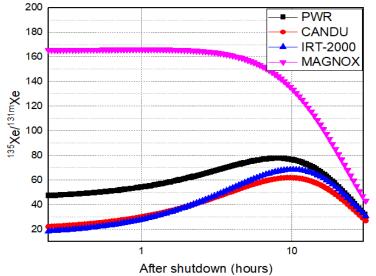
- We used isotopic activity ratio because collected isotopic activity can be changed depending on nuclear fuel mass and burnup.
- During reactor operation, xenon isotopic activity ratios reach equilibrium after a certain period.
- The equilibrium of ¹³⁵Xe/ ¹³³Xe ratio increases as uranium enrichment.
- For example, the equilibrium ¹³⁵Xe/¹³³Xe ratio for 6.0 wt% uranium enrichment is higher by ~2.8 times than the one for 1.5 wt% uranium enrichment.

4. Calculation Results (Reactor Types, Xenon Isotope Radioactivity)


- IRT-2000 shows the highest radioactivity for all the nuclides due to high specific power and uranium enrichment.
- For all the nuclides, the equilibrium isotope radioactivity increases as specific power.
- MAGNOX having lowest specific power has the lowest equilibrium isotopic radioactivity.

[Fig. 9. Xenon isotopic activities for different reactor types]


4. Calculation Results (Reactor Types, Xenon Isotope Radioactivity Ratio)



- CANDU shows high increase of ¹³⁵Xe/¹³³Xe after shutdown even though its specific power is lower than PWR.
- The equilibrium ¹³⁵Xe/ ¹³³Xe ratio can be used as an indicator for discrimination of the reactor types even if there are some overlaps between IRT-2000 and CANDU.

4. Calculation Results (Reactor Types, Xenon Isotope Radioactivity Ratio, After Shutdown)

[Fig. 11. Comparison of the ¹³⁵Xe/^{131m}Xe isotopic ratio evolutions for PWRs with different uranium enrichments]

[Fig. 12. Comparison of the ¹³⁵Xe/^{131m}Xe isotopic ratio evolutions for different reactors (PWR with 4.5wt% uranium enriched fuel)]

- ✤ The uranium enrichment gives a significant effect on the¹³⁵Xe/^{131m}Xe isotopic ratio. (Fig. 11)
 - The initial value : 20~60
- It is possible to discriminate MAGNOX reactor from the other reactors and to discriminate IRT-2000 and CANDU from the other reactors except for the PWRs having very low uranium enrichments less than ~1.0wt% within several hours after shutdown. (Fig. 12)

5. Conclusion

- In this study, we analyzed the xenon isotopic activities generated by nuclear activity in neighboring countries to find the source of nuclear activity.
- The activity of xenon isotopes was identified and their ratios were evaluated through SCALE simulation for the four possibly operable reactors (PWR, CANDU, IRT-2000, MAGNOX).
- In particular, ¹³⁵Xe was remarkable isotope, which was more affected by neutron flux than other xenon isotopes and showed significant changes by three factors (uranium enrichment, specific power, and moderator).
 - Under a same specific power, higher uranium enrichment of nuclear fuel leads to the low neutron flux, which reduces neutron absorption of ¹³⁵Xe and so gives higher equilibrium concentration.
 - High specific power produces a large amount of xenon isotopes.
 - Higher increase of ¹³⁵Xe after shutdown was observed for CANDU due to lower thermal neutron absorption by good moderating ratio of D₂O.
- Finally, it was shown that the MAGNOX reactor can be discriminated from the other reactors using ¹³⁵Xe/¹³³Xe ratio at the equilibrium state, and that CANDU and IRT-2000 reactor can be discriminated using this xenon isotopic ratio from PWRs having conventional uranium enrichments of 3.0~5.0wt%.

Thank you for listening

2021.10.21

Department of Nuclear Engineering, Hanyang University Computational Transport & Reactor Physics Laboratory

