2021 KNS Autumn Meeting

An Evaluation of a Hygrosopic Model in the SIRIUS Code

강형석*, 손동건, 하광순 *<u>hskang3@kaeri.re.kr</u>

한국원자력연구원(KAERI) 2021. 10. 21

Table of Contents

- Research Background & Objectives
 FP & Aerosol in a Humid Condition
- AHMED Experiment Research by VTT
 Aerosol and Heat Transfer Measurement Device
- Calculation of Aerosol Transport by SIRIUS
 Aerosol Deposition Model
 Comparison Results between Test Data and Calculation Results

Conclusion and Further Work

Importance of FP & Aerosol Behavior in a NPP

□ Amendment of Nuclear Safety Action(2015)

- **O** Accident Management Program(AMP) Effective date: 23 June 2016
- **O** Safety Target
 - Site boundary dose < 250 mSv</p>
- **O** FP & Aerosol almost locates in the humid environment
 - ✤ CsOH, CsI, NaOH : aerosol size increases in a humid condition
 - \rightarrow its settling rate increases

Korea Atomic Energy Research Institute

Accident Mitigation Research Team

Structure of SIRIUS (1)

FP INPUT

•Fuel Information ✓ Fuel type ✓Thermal power ✓ Fuel cycle •FP group Information \checkmark No. of groups ✓ User defined groups Source information ✓ FP release model ✓ Gap release fraction ✓ User defined source Aerosol Information ✓Aerosol factors ✓ Sedimentation area \checkmark Jet impaction area, dia. ✓ Heat surface area Numerical Information ✓Numerical scheme ✓ Time control parameters

KAERI

T/H INPUT

Node Information
✓ No. of nodes
✓ Geometry: area, length
✓ T/H: P, T, carrier gas properties
✓ Corium : UO₂, Zr, ZrO₂, B₄C, Inconel, SUS mass

SIRIUS

- Link Information
 - ✓No. of links
 - ✓ Geometry: area, node connection
 - ✓ T/H: carrier gas transfer
 - ✓ Corium transfer

FP OUTPUT

- Temporal group mass in each node
 - ✓ Species (solid)
 - ✓FP gas
 - ✓Airborne aerosol
 - ✓ Deposited aerosol mass on the wall
 - ✓ Decay heat distribution

Structure of SIRIUS (2)

Hygroscopic Model in SIRIUS

Aerosol Removal Model in the SIRIUS Code

- **O** Sedimentation, Inertial Impaction, Diffusiophoresis, Thermophoresis
- **O** Aerosol Transport Eq. $(\lambda_t = \lambda_{sed} + \lambda_{imp} + \lambda_{diff} + \lambda_{th} + \lambda_{tub})$

$$\frac{dm_{a,i}^{n}}{dt} = \dot{m}_{a,i,in}^{n} - \dot{m}_{a,i,out}^{n} - \lambda_{t,i}^{n} m_{a,i}^{n} + \dot{G}_{a,i}^{n}$$

Ref. : M. Epstein, NED 107, pp 327-344 (1988) Korea Atomic Energy Research Institute

Hygroscopic Effect (Aerosol Mass Increase)

$$(\emptyset - 1)r^4 - \frac{2\sigma}{\rho_w R_w T R_0}r^3 + \left(1 - \emptyset + \frac{M_w \rho_a}{M_a \rho_w}\right) + \frac{2\sigma}{\rho_w R_w T R_0} = 0$$

$$M_{aw} = (V_{wet} \rho_W)(r^3 - 1) \quad r = \frac{R_{eq}}{R_0} \quad \emptyset = \frac{P_{st}}{P_{sat}}$$

- $M_w: Molecular \ weight \ of \ water$
- M_a : Molecular weight of aerosol
- P_{st} : Water vapor pressure at the aerosol surface
- P_{sat} : Saturated water vapor pressure at the particle surface temperature
- R_o : Minimum radius of aerosol

Aerosol Heat Transfer Measurement Device Test

AHMED Test Facility (by VTT)

□ Test Facility, Condition & Results

Vessel Effective Volume	1.81 m ³
Vessel Radius	0.635 m
Vessel Effective Height	1.425 m
Sedimentation Area	$1.27 \mathrm{m}^2$
Approximate Diffusion Area	9.42 m ²
NaOH atomic weight	40 g/mol
Pressure	1.013×10 ⁵ Pa
Leakage Rate (RH constant during test)	206% of volume/24h (~2.6 liters per
	minute)
NaOH density	2130.0 kg/m ³
Dry NaOH particle size (AMMD/GSD)	2.4x10 ⁻⁶ m / 1.64

NaOH Airborne Concentration

Test Condition

Run	Relative	Temperature	Initial Mass	
	Humidity (%)	(K)	Concentration (mg/m ³)	
RH22	22	323.15	112	1.111
RH82	82	300.15	208	
RH96	96	296.15	218	

Ref. : MELCOR Manual, Vol. 3

Korea Atomic Energy Research Institute

Accident Mitigation Research Team

SIRIUS Calculation Results

□ SIRIUS Calculation for AHMED RH22/RH82/RH96

- **O** Nodalization for AHMED : single node
- **O** NaOH mass concentrations were given as the initial condition
- Pressure, Temperature, and RH conditions as time passes were given using a SIRIUS input file
- Transient calculation : 13,000 sec with a time step size of 1 s

*SIRIUS results show a faster concentration decrease as the RH condition increases which is similar to the test data.

*However, predicted results show much faster decrease than the test data for all cases

*This may mean that the hygroscopic growth of the NaOH aerosol predicted by SIRIUS was greatly increased in a short time when compared to the test data.

*The reason may be explained by the fact that this SIRIUS calculation did not consider the size distribution. The hygroscopic effect generally occurs at larger size aerosols(>10µm).

MELCOR Results for AHMED Test

MELCOR Calculation Results for AHMED Test

O Sectional method(size distribution model) was used

Korea Atomic Energy Research Institute

Accident Mitigation Research Team

14000

-1.8.6

-- 2.1

Test

10000

12000

Conclusion and Further Work

Conclusion

- We evaluated the hygroscopic model in the SIRIUS code without considering the size distribution effect against the AHMED test performed by VTT.
- The SIRIUS results showed much faster growth than the test data even though the aerosol settling according to RH conditions was accurately simulated.

Further Work

○ SIRIUS calculation for the AHMED test will be done using a size distribution model implemented in the SIRIUS code.

