Prediction of the critical flow rate of subcooled water through the short length channel using analytical method

2021. 10. 22

Taewoo Kim^a, Hyun-Sik Park^{a,b}, Sang Ji Kim^c

^a Advanced Nuclear Engineering and System, University of Science and Technology
 ^b Innovative System Safety Research Division, Korea Atomic Energy Research Institute
 ^c Versatile Reactor Technology Development Division, Korea Atomic Energy Research Institute

Introduction (1/2)

Two-phase critical flow

- The leakage of pressurized water through breaks is encountered in pipe line and heat transfer tube in nuclear power plants.
- When the velocity of leaking fluid reaches the sound speed, the leak rate cannot be increased more even though the downstream pressure decreases more (critical flow).
- The critical flow rate depends on the stagnation condition and channel geometry. Moreover, the two phase flow occurs due to the flashing of water.
- Most of studies of critical flow are related to long channel (L/D > 12), which are not suitable for the SG tubes (L/D ratios are generally 0.8~2.0) [1].

Flow patterns of critical flow [2]

- L/D < 3: Superheated liquid jet is surrounded by a vapor annulus
- 3 < L/D < 12 : Vapor bubbles are formed in the middle of the jet
- 12 < L/D : Dispersed two-phase region

Introduction (2/2)

Parameter range of two-phase critical flow experiments on short length channel

	Geometry	Channel length (mm)	Hydraulic diameter (mm)	L/D	P ₀ (MPa)	ΔT _{sub} (°C)	Remarks
Sozzi and Sutherland (1975) [3]	Tube	4.7-1778	12.7	0.37-140	~6.5	2-43	Henry-Fauske model was not comparable for $\Delta T_{sub} > 20^{\circ}C$
Park et al. (2000) [4]	Tube	2.0-8.0	2.0-8.0	0.5-2.0	4	2-200	Empirical correlation was derived
Revankar et al. (2013) [1]	Slit	1.3	0.59-1.04	1.25-5.42	~6.8	14-51	RELAP5 H-F and R-T model: 30% and 15% error Burnell correlation was modified
Revankar et al. (2019) [5]	Crack	1.2-3.18	0.21-0.65	1.85-6.09	1.4~6.8	12-62	-

3

• Correlation of two-phase critical flow rate (L/D < 3)

Park et al. [4]
$$G_{c} = C_{d,ref} \sqrt{2\rho_{ref}(P_{0} - P_{b})} \left\{ 1.04 - \frac{3.3}{1 + \exp[(\Delta T_{sub}^{*} + 1.1)/0.49]} \right\}, \quad \Delta T_{sub}^{*} = \frac{T_{sat} - T_{0}}{T_{sat} - T_{ref}}$$

Revanakr et al. [1]
$$G_{c} = \sqrt{2\rho_{0}(P_{0} - kP_{b})}, \qquad k = 1 + 11.6 \left(\frac{\Delta T_{sub}}{T_{sat}}\right)^{1.7}$$

Limitations of existing models and correlations

- Analytical models such as Henry-Fauske and Trapp-Ranson model cannot be used for the critical flow through short length channel. Most of models were developed for the range of L/D > 12.
- Although the correlations were developed for L/D > 12, they are not evaluated for various geometries. The developed correlation
 might be applied only for the specific geometry.

Objectives and Scope

Objectives

- To investigate the characteristics of critical flow through short length channels
- To develop the analytical method to predict two-phase critical mass flux

Scope

Development of analytical method for critical mass flux

-Problems of Henry-Fauske Model

-Modification of existing analytical method

• Comparison with the previous

-Experiments that measured the critical mass flux through short tube, slit, and crack

-Correlations developed for L/D < 3

4

Type of flow channel

Calculation method of Henry-Fauske Model

 \rightarrow Ideal momentum equation

$$G = \sqrt{\frac{2(P_0 - P_c)}{v_{f,0}}} \quad \dots (eq. 1)$$

 \rightarrow Henry-Fauske model for subcooled water [6]

$$G = \left[\left(v_{g,eq} - v_{f,0} \right) \frac{N}{\left(s_{g,eq} - s_{f,eq} \right)} \frac{ds_{f,eq}}{dP_t} \right]^{-1/2} \dots (eq.2)$$

$$N = \frac{x_{eq}/0.14}{1} \qquad \begin{array}{c} x_{eq} \le 0.14 \\ x_{eq} > 0.14 \end{array}$$

- By assuming P_c, the critical mass flux and pressure are determined at the point where the mass flux calculated by eq. (1) and eq. (2) become equal.
- Henry-Fauske model = 67,589 kg/m²s
 Experimental result = 54,400 kg/m²s
- Critical pressure ratio is higher than previous investigations Henry-Fauske model Fauske's experimental result $P_c/P_0=0.34$ $P_c/P_0=0.28$

5

Review on Modification of Henry-Fauske Model

→ Henry-Fauske model for subcooled water [6]
$$G = \left[\left(v_{g,eq} - v_{l,0} \right) \frac{N}{\left(s_{g,eq} - s_{l,eq} \right)} \frac{ds_{l,eq}}{dP} \right]^{-0.5}$$

• Wang et al. [8] suggested the following non-equilibrium factor

$$N = 0.0376 \frac{L}{D} - 0.163 \text{ (Saturated)}$$
$$N = \left(0.0376 \frac{L}{D} - 0.163\right) \exp(-0.322\Delta T_{sub}) \text{ (Subcooled)}$$

• Ghosh et al. [9] suggested that the critical pressure should be calculated by considering various pressure losses.

$$\Delta P_{tot} = P_0 - P_c$$

$$\Delta P_{tot} = \Delta P_e + \Delta P_f + \Delta P_{aph} + \Delta P_{aa} + \Delta P_K$$

$$\Delta P_e = \text{Entry loss}$$

 ΔP_f = Friction pressure drop

 ΔP_{aph} = Acceleration pressure drop after flashing

 ΔP_{aa} = Pressure loss by area change

 ΔP_K = Pressure loss by protrusion in actural crack

Some loss terms are not significant for L/D < 3 Some loss terms are difficult to be calculated They were compared with experiments (L/D = 16.1, 25.6) **but, cannot be used for L/D < 4.34** 6

• Previous methods for the modification of Henry-Fauske Model are not suitable for the condition of L/D < 3

New prediction of critical mass flux (1/3)

Characteristics of two-phase flow in short length channel [10]

There is no enough time to become a equilibrium condition at the choking location.

Fluid passing will not have sufficient time to completely nucleate before leaving the pipe or tube.

Reference	Non-equilibrium factor (N)	Steam quality (x)	Remark
Henry [2]	$N = 20x_{eq} (x_{eq} \le 0.05)$ 1 (x _{eq} > 0.05)	$x = Nx_{eq} \{1 - \exp[-0.0523(L/D - 12)]\}$	Applicable for L/D > 12
Henry and Fauske [6]	$N = x_{eq}/0.14 \ (x_{eq} \le 0.14)$ 1 (x_{eq} > 0.14)	$x = Nx_{eq}$	Applicable for low quality region
Xu and Wang [7]	$N = (0.037 \cdot L/D - 0.164) \exp\left(-20.7 \frac{\Delta T_{sub}}{T_c}\right)$	$x = Nx_{eq}$	Applicable for L/D > ~4.34

Non-equilibrium factor and steam quality

Homogeneous Frozen model [11]

• The equation of sound speed of two-phase flow can be derived by combining the mass and momentum conservation of two-phase flow in one-dimension

$$a_{tp}^{2} = \left\{ \left[\alpha^{2} + \alpha(1-\alpha)\frac{\rho_{f}}{\rho_{g}} \right] \frac{d\rho_{g}}{dP} + \left[(1-\alpha)^{2} + \alpha(1-\alpha)\frac{\rho_{g}}{\rho_{f}} \right] \frac{d\rho_{f}}{dP} + \left(\rho_{g} - \rho_{f} \right) \frac{\alpha(1-\alpha)}{x(1-x)} \frac{dx}{dP} - \alpha(1-\alpha)\left(\rho_{g} - \rho_{f} \right) \frac{dk}{dP} \right\}^{-1} \right\}$$

Polytropic,
$$\frac{d\rho_g}{dP} = \frac{\rho_g}{nP}$$
 Isentropic flow, $\frac{d\rho_f}{dP} = \frac{1}{a_f^2}$ Adiabatic, $\frac{dx}{dP} = 0$ Homogeneous, $\frac{dk}{dP} = 0$

$$a_{HFM}^2 = \left\{ \frac{1}{\left[\alpha^2 + \alpha (1-\alpha) \frac{\rho_f}{\rho_g} \right] + \left[(1-\alpha)^2 + \alpha (1-\alpha) \frac{\rho_g}{\rho_f} \right] \frac{nP}{\rho_g a_f^2}} \right\} \frac{nP}{\rho_g}$$

New prediction of critical mass flux (2/3)

 \rightarrow Momentum equation

$$G = C_d \sqrt{\frac{2(P_0 - P_c)}{v_{f,0}}} \quad \dots (eq.3)$$

Discharge coefficient, $C_d = \frac{actual flow rate}{ideal flow rate}$

 \rightarrow Sound speed by Homogeneous Frozen Model

$$\boldsymbol{a}_{HFM} = \left\{ \left[\alpha^2 + \alpha (1-\alpha) \frac{\rho_f}{\rho_g} \right] + \left[(1-\alpha)^2 + \alpha (1-\alpha) \frac{\rho_g}{\rho_f} \right] \frac{nP_c}{\rho_g a_f^2} \right\} \frac{nP_c}{\rho_g} \quad ^{-1/2}$$

Void fraction,

$$=\frac{1}{1+\frac{(1-x)\rho_g}{x\rho_f}}$$

Quality,

 $x = Nx_{eq},$

Mixture density,
$$\rho_{mix} = \alpha \rho_g + (1 - \alpha) \rho_f$$

Mass flux,
$$G = \rho_{mix} a_{HFM} \dots (eq. 4)$$

α

8

→ Correlation of discharge coefficient, Idelchik [12] $C_{d} = \xi^{-0.5} \qquad \xi : \text{total loss coefficient through sharp-edged orifice} \\ (0.015 < L/D < 2.5)$ $\xi = 0.5(1 - A_{0}/A_{1})^{0.75} + (1 - A_{0}/A_{2})^{2} + \tau(1 - A_{0}/A_{1})^{0.375}(1 - A_{0}/A_{2}) + fL/D$ $\tau = (2.4 - L/D) \times 10^{-\varphi},$ $\varphi = 0.25 + 0.535(L/D)^{8}/(0.05 + (L/D)^{7})$ $f = 1/(1.8 \ln(Re) - 1.64)^{2}$ Filonenko and Altshul formula: Friction factor for turbulent flow through smooth circular tube

New prediction of critical mass flux (3/3)

Comparison of present method and Henry-Fauske Model

9

[Calculation condition [4]: $P_0 = 4.0$ MPa, $\Delta T_{sub,0} = 55.1$ K, L= 8 mm, D= 4 mm, L/D = 2.0]

	Experiment [4]	Henry-Fauske [6]	Present
Critical mass flux (kg/m ² s)	54,400	67,589	53,955
Critical pressure ratio	-	0.34	0.28
Discharge coefficient	0.77	-	0.81

- The present method shows more accurate critical mass flux than the Henry-Fauske model
- The critical pressure ratio by the present method is the same with the Fauske's investigation.

Comparison with experiment, short tube (1/2)

Sozzi and Sutherland's experiments [3]

P_0 (MPa)	ΔT_{sub} (°C)	Geometry	L (mm)	D (mm)	L/D	$C_{d,ref}$	C _{d,cal}
6.5	2.3 ~ 42.9	Tube	4.7	12.7	0.37	0.73	0.66

10

Comparison of prediction and experimental results [3]

- The predicted critical mass flux using $C_{d,ref}$ shows -4.3 ~ 2.3 % difference with the measured critical mass flux using $C_{d,cal}$ shows -10.3 % difference with the measured critical mass flux
- The measured critical pressure ratio shows almost constant values (~0.3).
 On the other hand, the calculated pressure ratio is 0.56 at low subcooling and reduced as the subcooling increases.
- Physically, the pressure ratio is inversely proportional to the mass flow rate. The critical pressure ratio would be difficult to measure accurately

Comparison with experiment, short tube (2/2)

Park et al.'s experiments [4]

P_0 (MPa)	ΔT_{sub} (°C)	Geometry	L (mm)	D (mm)	L/D	C _{d,ref}	C _{d,cal}
4.0 2.0 ~ 105.6			2	4	0.5	0.67	0.66
		4	4	1	0.72	0.76	
	2.0 ~ 105 6	Tube	8	4	2	0.77	0.82
	100.0		4	8	0.5	0.63	0.73
			8	8	1	0.61	0.78

- D = 4 mm : with an increase of L/D, the difference between $C_{d,ref}$ and $C_{d,cal}$ increase

- D = 8 mm : difference between $C_{d,ref}$ and $C_{d,cal}$ becomes higher than 0.1 <u>this causes inaccuracy</u> <u>prediction of G_{cri} </u>

Comparison of prediction and experimental results [4]

• Prediction using *C*_{*d*,*ref*}

• Prediction using C_{d.cal}

Revankar et al.'s experiments [1]

P ₀ (MPa)	ΔT_{sub} (°C)	Geometry	L (mm)	D (mm)	L/D	C _{d,ref}
6.8	14~ 51	Slit	1.3	0.62 ~ 0.98	1.33 ~ 2.11	0.54~ 0.9

Comparison of prediction and experimental results [slit]

- $C_{d,cal}$ is in the range of 0.79~0.81. However, for some cases $C_{d,ref}$ is 0.54 and 0.61.
- For slit, the geometry effects such as aspect ratio should be considered in the calculation of $C_{d,cal}$

Comparison of prediction and experimental results [crack]

• Since $C_{d,ref}$ was not informed in the reference [5], the critical mass flux is predicted based on $C_{d,cal}$ by Idelchik correlation.

13

- As mentioned before, the correlation of Idelchik has limitations to use for the geometries which are not circular shape.
- However, the predicted mass flux shows good agreement with experimental results

Summary

- Based on the characteristics of two-phase critical flow through short channel, HFM and Mass flux calculation with C_{d,ref} are used to predict the critical mass flux.
- The present method shows good agreement in various geometries and the existing correlations for short channel are not applicable for various geometries

Prediction Experimental data	Present method	Park et al. [4] (Correlation)	Revankar et al. [1] (Correlation)
Sozzi & Sutherland [3](short tube)	-4.3 ~ 2.3 %	17.3 %	-20.4 ~ 8.4 %
Park et al. [4] (short tube)	-7.5 ~ 2.7 %	-1.3 ~ 2.5 %	-3.2 ~ 29.7 %
Revankar et al. [1] (slit)	-6.7 ~ 5.0 %	-2.3 ~ 11.5 %	-8.5 ~ 25.4 %
Revankar et al. [5] (crack)	-5.1 ~ 5.6 %	15.6 %	-16.3 ~ 13.0 %

[Mean relative error of present method and existing correlations compared to experimental data]

- The present method can be applied for the short length channel with various cross-sections in the range of L/D < 3, and $\Delta T_{sub} \le 100^{\circ}$ C.
- For some cases, the results of critical mass flux using calculated C_d are not comparable with experiments. It is necessary to consider the effects of diameter and cross-section shape.

Refences

[1] S..T. Revankar, B. Wolf, and A. Vadlamnai, Assessment of leak rates through steam generator tubes, PU/NE-13-11, Pur-due University, 2013.

- [2] R.E. Henry, The two-phase critical discharge of initially saturated or subcooled liquid, Nuclear Science and Engineering, Vol. 41, pp. 336-342, 1970.
- [3] G.L. Sozzi, W.A. Sutherland, Critical flow of saturated and subcooled water at high pressure, NEDO-13418, General Electric Company, 1975.
- [4] C.K. Park, S. Cho, T.S. Kwon, S.K. Yang, M.K. Chung, An experimental investigation of maximum flow rates of subcooled water through square edge orifices with small diameters, NTHAS2: Second Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety, Fukuoka, Japan, Oct. 15-18, 2000.
- [5] S.T. Revankar, J. Riznic, An experimental investigation of subcooled choked flow in actual steam generator tube cracks, Nuclear Engineering and Design, Vol. 354, 110144, 2019.
- [6] R.E. Henry, H.K. Fauske, The two-phase critical flow of one-component mixtures in nozzles, orifices, and short tubes, Journal of Heat Transfer, Vol.93, pp.179-187, 1971.
- [7] J. Xu, R. Wang, Critical flow with high pressure water flow-ing in small diameter sharp-edged tubes, Heat and Mass Trans-fer, Vol. 35, pp. 205-211, 1999.
- [8] M. Wang, S. Qiu, G. Su, W. Tian, Research on the leak-rate characteristics of leak-before-break (LBB) in pressurized water reactor, Appl. Therm. Eng, Vol. 62, pp. 33-140, 2014.
- [9] B. Ghosh, S.K. Bandyopadhyay, S.K. Gupta, H.S. Kushwaha, V. Venat Raj, Leak rates through cracks and slits in PHT pipes for LBB. Nucl. Eng. Des. Vol. 212, pp. 85-97, 2002.
- [10] Y.S. Kim, Overview of geometric effects on the critical flow rate of subcooled and saturated water, Annals of Nuclear Energy, Vol. 76, pp. 12-18, 2015.
- [11] R.E. Henry, M.A .Grolmes, H.K. Fauske, Pressure-pulse propagation in two-phase one- and two-component mixtures, ANL-7792, Argonne National Laboratory, 1971.
- [12] I.E. Idelchik, 2008. Handbook of Hydraulic Resistance, 4th ed. Begell House, Inc.

