

Transactions of the Korean Nuclear Society Autumn Meeting, Oct. 21-22, 2021

Preliminary Hydrogen Cryo-sorption and Desorption Test using Molecular Sieve Bed

M.-Y. Ahn¹, S. C. Park¹, S. K. Son¹, S. Cho¹, Y.-H. Park¹, Y. Lee¹

¹ Korea Institute of Fusion Energy (KFE), Daejeon, Rep. of Korea

Outline

- 1. Introduction
- 2. Experimental Description
- 3. Results on Hydrogen Adsorption
- 4. Results on 2 Cycles of Hydrogen Adsorption/Desorption
- 5. Summary

Overall Fuel Cycle

- Inner fuel cycle represents systems for supplying tritium to tokamak, and recycling and purifying the un-burnt tritium
- Outer fuel cycle primarily composes processing lines and systems to extract tritium produced from blankets, and to deliver it to inner fuel cycle

KEE

Tritium Production and Extraction in Outer Fuel Cycle

Tritium produced in the blanket is extracted by purge gas

- The helium purge gas flows around the pebbles to extract produced tritium
- Small fraction of hydrogen is added to the purge gas to facilitate tritium release
- Low concentration hydrogen isotopes exist in the purge gas, which need to be separated from helium before routing to the inner fuel cycle

Technology for Separation of Hydrogen Isotopes

Main processes adopted for the Tritium Extraction System (TES) of HCCR-TBS

During adsorption phase, Q₂ & Q₂O are adsorbed by Cryogenic Molecular Sieve Beds (CMSB) & Ambient Molecular Sieve Beds (AMSB), respectively

KFE

Technology for Separation of Hydrogen Isotopes

- Main processes adopted for the Tritium Extraction System (TES) of HCCR-TBS
 - During desorption phase regenerated hydrogen isotopes are purified at the diffuser and stored in the getter bed

Objectives of the Study

Demonstration of large-scale cryogenic adsorption performance

- Cryogenic adsorption is known to be an efficient method to separate low concentration hydrogen isotopes from helium
- The adsorption characteristic and performance has been investigated by previous studies in small-scale apparatus with adsorbent from several grams to two kilograms
- The required adsorbent is estimated exceeding several tens of kilograms for the TES of HCCR-TBS, and it will required more for beyond if adopted

Investigation on the large-scale CMSB operability

KNS, Oct. 21-22, 2021

Impact of desorption are explored on operation of tritium circuit in breeding blankets, in particular the TES of HCCR-TBS, with focus on transition between adsorption and desorption phases

5

- 1. Introduction
- 2. Experimental Description
- 3. Results on Hydrogen Adsorption
- 4. Results on 2 Cycles of Hydrogen Adsorption/Desorption
- 5. Summary

PGLoop

PGLoop facility is in operation in NFRI

- Basic tests for unit process, and integral test for adsorption and desorption envisaged for the TES of HCCR-TBS
- Gas circulation module, gas control module, AMSB module, CMSB module, diffuser & storage module, vacuum module, etc.

CMSB Module

The experiments for this study were performed using PGLoop CMSB module

Process

- Large-scale CMSB
 - Inner vessel to contain MS5A
 - Mid vessel for LN2
 - Outer vessel for vacuum insulation

CMSB Module

The experiments for this study were performed using PGLoop CMSB module

- Large-scale CMSB
 - Inner vessel to contain MS5A
 - Mid vessel for LN2
 - Outer vessel for vacuum insulation

Schematic Diagram

The experiments for this study were performed using PGLoop CMSB module

- Evacuation of the loop and the CMSB regeneration with helium purging several times
- LN2 supply to the CMSB in order to cool down to 77 K
- Helium gas is circulated at process conditions
- Hydrogen is introduced by controlling mass flow controller set to the purge gas conditions
- H2 concentration measurement at the inlet and outlet of the CMSB using QMS1 & QMS2
- Stop supplying H2 when the breakthrough achieved

Schematic Diagram

The experiments for this study were performed using PGLoop CMSB module

- The main circulation loop is closed and the desorption loop is opened
- LN2 is evacuated and carrier gas (helium) flows in the desorption loop at process conditions
- H2 concentration measurement at QMS3
- Stop flowing the sweep gas and preparation of the next adsorption

Outline

- 1. Introduction
- 2. Experimental Description
- 3. Results on Hydrogen Adsorption
- 4. Results on 2 Cycles of Hydrogen Adsorption/Desorption
- 5. Summary

The experimental conditions were chosen to include the blanket relevant parameters

- The purge gas pressure targeted 120 kPa and 160 kPa
- Hydrogen concentration ranged from 0.1% to 0.6%
- Flowrates 70 SLPM and 100 SLPM

		Para	Results			
No.	Pressure at CMSB inlet [kPa]	H2 concentration* [%]	H2 partial pressure	Flowrate [SLPM]	H2 adsorbed [stand. L]	H2 adsorption capacity [mol/g]
1	120	0.090	103	70	382	3.367E-4
2	120	0.120	154	70	497	4.378E-4
3	121	0.248	311	70	747	6.576E-4
4	125	0.602	696	70	1099	9.675E-4
5	155	0.211	310	70	745	6.559E-4
6	159	0.439	636	70	1050	9.244E-4
7	158	0.245	316	100	753	6.629E-4
8	165	0.408	660	100	1100	9.684E-4

S. C. Park et al, Fusion Eng. Des., Vol. 146 (2019), 1863-1867

* Based on QMS2 measurement after the breakthrough

Effect of Parameters

- The effect of total pressure and flowrates is shown to be negligible for largescale adsorption, and amount of H₂ adsorbed depends on hydrogen partial pressure as reported by small-scale experiments
- This means that diffusion of hydrogen gas in the purge gas is dominant than convection for the current CMSB design
 - The purge gas speeds for all conditions are sufficiently low
 - Mesh structure located at the bottom of the inner vessel seems to enhance distribution of the flow
 * Based on QMS2 measurement after the breakthrough

on* H2 partial pressure 103	Flowrate [SLPM]	H2 adsorbed [stand. L] 382	H2 adsorption capacity [mol/g]
103	70	382	0.0075.4
		00E	3.367E-4
154	70	497	4.378E-4
311	70	747	6.576E-4
696	70	1099	9.675E-4
310	70	745	6.559E-4
636	70	1050	9.244E-4
316	100	753	6.629E-4
660	100	1100	9.684E-4
	154 311 696 310 636 316 660	154 70 311 70 696 70 310 70 636 70 316 100 660 100	154 70 497 311 70 747 696 70 1099 310 70 745 636 70 1050 316 100 753 660 100 1100

S. C. Park et al, Fusion Eng. Des., Vol. 146 (2019), 1863-1867

Adsorption Performance

- The adsorption performace of the present study shows on average 74% and 87% compared to small scale experiments [4] and [7]
- However, compared to small scale experiment [12] which used the same MS5A product, the present experiment shows 96% adsorption performance

S. C. Park et al, Fusion Eng. Des., Vol. 146 (2019), 1863-1867

Breakthrough Curves

- Relatively fast transition of breakthrough occurs for all cases showing favorable adsorption characteristics of MS5A as reported by literature for small-scale experiments
- Steeper gradients are observed for higher hydrogen flowrates

Tool for Computation

- Numerical computation was performed for comparison
 - Dynamic modeling tool which has been developed for predicting tritium retention, removal and permeation for HCCR-TBS under KO-US FNST/blanket collaboration was used

- A. Ying et al., Fusion Science and Technology 68 (2015), 346-352
- A. Ying et al., Fusion Engineering and Technology 109-111 (2016), 1511-1516
- A. Ying et al., https://doi.org/10.1016/j.fusengdes.2018.04.093

Comparison to the Computational Result

Numerical computation was performed for comparison

- Performance of the experiments is around 90% compared to the computation
- The difference between experiments and computation can also come from modeling details (ex. Packing fraction of MS5A, temperature distribution, velocity distribution, etc.)

	Parameters				Experiments	Computation	
No.	Pressure at CMSB inlet [kPa]	H2 concentration* [%]	H2 partial pressure	Flowrate [SLPM]	H2 adsorbed [stand. L]	H2 adsorbed [stand. L]	Ratio [%]
1	120	0.090	103	70	382	389	98.1
2	120	0.120	154	70	497	534	93.1
3	121	0.248	311	70	747	847	88.2
4	125	0.602	696	70	1099	1247	88.1
5	155	0.211	310	70	745	847	88.0
6	159	0.439	636	70	1050	1206	87.1
7	158	0.245	316	100	753	834	90.3
8	165	0.408	660	100	1100	1220	90.2

S. C. Park et al, Fusion Eng. Des., Vol. 146 (2019), 1863-1867

Outline

- 1. Introduction
- 2. Experimental Description
- 3. Results on Hydrogen Adsorption
- 4. Results on 2 Cycles of Hydrogen Adsorption/Desorption
- 5. Summary

Experimental Scenario

- Hydrogen adsorption and desorption for 2 cycles were carried out
 - Cryogenic adsorption until complete breakthrough
 - In the first cycle, desorption conducted with 20 SLPM flowrate for ~ 2.5 days and preparation of the next adsorption for ~ 0.5 day
 - In the second cycle, desorption conducted with 40 SLPM until room temperature

Adsorption Parameters

The adsorption parameters for Exp. 1-1 were chosen

		Experiments			
No.	Pressure at CMSB inlet [kPa]	H2 concentration* [%]	H2 partial pressure	Flowrate [SLPM]	H2 adsorbed [stand. L]
1	120	0.090	103	70	382
2	120	0.120	154	70	497
3	121	0.248	311	70	747
4	125	0.602	696	70	1099
5	155	0.211	310	70	745
6	159	0.439	636	70	1050
7	158	0.245	316	100	753
8	165	0.408	660	100	1100

Adsorption Results

- The adsorption results demonstrate good repetition of the performance
 - It looks like sufficient desorption took placed during 2.5 days desorption after full adsorption of the CMSB

Desorption performance for the first cycle with 20 SLPM carrier gas

Desorption performance for the second cycle with 40 SLPM carrier gas

Comparison between two desorption

Comparison between two desorption

Outline

- 1. Introduction
- 2. Experimental Description
- 3. Results on Hydrogen Adsorption
- 4. Results on 2 Cycles of Hydrogen Adsorption/Desorption
- 5. Summary

Summary

- Large-scale hydrogen adsorption and desorption experiments were conducted using CMSB module of PGLoop facility
- Adsorption performance of large-scale CMSB comparable to the TBS-relevant scale was demonstrated
 - Size effect on the adsorption is not large for the current CMSB design, and the adsorbed amount depends only on hydrogen partial pressure as reported by smallscale studies
 - Diffusion of hydrogen gas in the purge gas is the dominating factor in CMSB design

Desorption performance was studied using the CMSB stand-alone testing

- Although most of hydrogen seems to be desorbed by 2.5 days, time to reach full desorption is likely to require more than 2.5 days for the current CMSB design
- Further study is required to establish operational parameters and scenarios for desorption

 In future, it is expected that desorption performance and switching to adsorption will be investigated in conjunction with the diffuser module

Thank you for your attention!

