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1. Introduction 

 
Probabilistic safety assessment (PSA) is a 

methodology that quantifies the risk of nuclear power 

plants (NPPs) by evaluating the probability of nuclear 

accident from a sequence of events. The event refers an 

initiating event or operator/system’s action, and the 

sequence of events is called a scenario. The probability 

of accident (e.g., core damage) of corresponding scenario 

can be derived by simulating thermal-hydraulic 

dynamics of nuclear reactor. In doing this, thermal-

hydraulic (TH) code is used for the simulation, which 

takes more than hours for the simulation of one scenario.  

In order to improve the nuclear safety, the accuracy of 

PSA can be improved by analyzing broader and granular 

accident scenarios [1]. Compared to typical binary event 

tree, degree and timing of action can be considered in 

dynamic PSA (DPSA). However, long computation time 

of TH code is critical for massive analysis, thus the 

development of a fast surrogate model of TH code that 

approximate the result is necessary. 

In this research, we build data-driven surrogate model 

of TH code via deep learning. First, we formulate the 

operation of TH code into machine learning problem. 

Second, we propose LSTM based probabilistic deep 

learning model as a fast running model of TH code. 

 Deep learning deals data in batch manner thus the 

proposed model speeds up the calculation time by 

generating output of multiple input scenarios at once. 

 

2. Problem Formulation 

 

In this section, we formulate the operation of TH code 

into machine learning problem. Let x = [𝑥1, 𝑥2, … , 𝑥𝑑] ∈
ℝ𝑑 be the input vector of TH code, where 𝑥𝑖 is a value 

that explains an event. For example, 𝑥1 indicates type of  

initiating event. 𝑥2 and 𝑥3 represents the degree and time 

of action for opening charging valve. Then the output of 

TH code Y  is multivariate time-series data in ℝ𝑇×𝑁 

where T and N are the length and the number of variables 

to be simulated. Hence, operation of TH code can be 

formulated as a vector to matrix function, Y = 𝑓(x) 

which can be modeled by simple multi-layer perceptron. 

To leverage temporal relation in output data, this can 

be also solved with recurrent neural networks (RNN) by 

reformulating it to matrix to matrix function (so called 

many-to-many problem). By stacking x for N times, we 

could obtain X ∈ ℝ𝑇×𝑑 , where x𝑡 = x ∀𝑡 . Based on 

above setting, we can build RNN as 𝑦t = 𝑔(x𝑡 , h𝑡−1) 

where h𝑡−1 is hidden states of previous time-step.  

 

3. Deep Learning Model 

 

Based on the problem formulation in Section 2, we 

build RNN model by utilizing bi-directional LSTM, 

positional encoding, multiple quantile regression, and 

model ensemble. Below subsection describes each 

techniques in brief. 

 

3.1 Bi-directional LSTM. 

 

An RNN is a class of neural network architecture that 

outputs based on not only the input from the current time-

step but also the hidden states from the previous time-

step. Long short-term memory (LSTM) [2] is one of 

classic RNN architecture that resolves long-term 

dependency problem (i.e., LSTM could learn the relation 

of data in distant past). LSTM controls the flow of 

information via gates. According to the direction of 

information flow in LSTM, it can be classified 

directional or bi-directional LSTM. Modeling in Section 

2 make possible to use of bi-directional LSTM [3] 

because the action in future is already described in the 

scenario. LSTM in forward direction learns 𝑦𝑓 ,𝑡 =

𝑓(x𝑡 , h𝑡−1)  and in backward direction learns y𝑏,t =

𝑓(x𝑡 , h𝑡+1) ;  yt = 𝑔(𝑦𝑓,𝑡 , 𝑦𝑏,𝑡). 

 

3.2 Positional encoding 

 

Positional encoding (PE) was introduced for 

transformer architecture to capture an order-related 

feature in text data [4]. PE encodes real-value time-step 

𝑡 into a vector pt ∈ ℝ𝑑′
 with sinusoidal function. 

 

𝑝𝑖,𝑡 = {
sin (

𝑡

10000𝑖/𝑑′ 
), 𝑓𝑜𝑟 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛 

cos (
𝑡

10000𝑖/𝑑′
) , 𝑓𝑜𝑟 𝑖 𝑖𝑠 𝑜𝑑𝑑 

  (1) 

 

In general, p𝑡  has same dimension to x𝑡  and their 

addition is used as an input. We concatenate two vectors 

rather than addition. Hence the model could learn 

temporal feature by explicitly given p𝑡 .  
 

3.3 Multiple quantile regression. 

 

In order to deal with the uncertainty of prediction 

result, deep learning model could perform probabilistic 
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forecasting where the model outputs not only the point 

prediction (mean) but also the distribution information. 

Two approaches for modeling the output distribution are 

a) modeling the variance by minimizing Gaussian 

negative log likelihood and b) modeling multiple 

quantiles by minimizing pinball loss.  

In this research, we formulate the proposed model to 

predict multiple quantiles simultaneously. Quantile 

function is the inverse function of cumulative 

distribution function (CDF). For a random variable 𝑋 

and its cumulative distribution function 𝐹𝑋(𝑥), the 𝜏-th 

quantile 𝑥𝜏 is 𝐹𝑋
−1(𝜏) where 𝜏 exists between (0,1).  For 

example, if 𝜏 = 0.2, the probability of X ≤ x0.2 is 20 %.  

Proposed deep learning model outputs the prediction 

of 0.1, 0.3, 0.5 (median), 0.7, and 0.9  –th quantiles, 

then prediction uncertainty can be modeled. The model 

is trained with pinball loss function. By changing the 

notation from x to y, loss for 𝜏-th quantile is 

 

𝐿𝜏(𝑦, 𝑦̂𝜏) = {
𝜏(y − 𝑦̂𝜏)   𝑖𝑓 𝑦 ≥ 𝑦̂𝜏 

(𝜏 − 1)(y − 𝑦̂𝜏)   𝑖𝑓 𝑦 <  𝑦̂𝜏 
 (2), 

 

and multiple quantile loss is ∑ 𝐿𝜏τ , for τ =
{0.1. ,0.3, 0.5, 0.7, 0.9 }.  

 

3.4 Model ensemble and system setup 

We trained five model with different random seed for 

weight initialization. The final output is determined by 

the average their results. The network is built using 

tensorflow, and trained with adam and learning rate of 

0.001. Maximum epoch is set to 150 with reducing 

learning rate on plateau and early stopping techniques. 

 

4. Experiments 

 

4.1 Model structure 

 

The proposed model namely ensemble quantile 

recurrent neural network (eQRNN) has following 

structure.  

 

Input(16) - Tile(16,360) - cPE(24,360) - BiLSTM(256) - 

BiLSTM(256) - Dense(128) - Dense(64) - Dropout(0.2) - 

Dense(5) 

 

Tile layer performs tiling operation that expand input 

vector into matrix. cPE indicates concatenative PE layer 

with 𝑑′ = 8. BiLSTM, and Dense represent bidirectional 

LSTM and fully-connected layer, respectively. The 

numbers in parenthesis are either shape of layer output 

(Input, Tile, cPE) or key layer parameter (BiLSTM, 

Dense, Dropout).  

 

4.2 Experimental results 

 

First, we gather the TH code simulation data of total 

104,625 scenarios, then divide into training (58%), 

validation (8%), and two test sets namely test in set (17%) 

and test out set (17%), respectively. Input scenario is 16 

dimensional vector and test out sample corresponds to 

the scenarios with pressurizer heater on timing of 3.6. 

Output of TH code is sequential observation of key 

reactor parameters; 10-seconds interval observations of 

total 3600-seconds long sequence after initiating event. 

To evaluate the accuracy of approximation via deep 

learning model, prediction errors are compared in terms 

of mean absolute percentage error (MAPE) and mean 

squared error (MSE). Note that MAPE and MSE is 

calculated per sequence based on the following equations 

where 𝑦𝑡  and  𝑦̂𝑡  represent real and predicted value at 

time t, respectively. 

 
Table I :.Error metrics 

MAPE 
1

360
∑

𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡

360

𝑡=0
 

MSE 
1

360
∑ (𝑦𝑡 − 𝑦̂𝑡)2

360

𝑡=0
 

 

 We compare the proposed methodology with two 

baseline neural networks (FNN : fully-connected neural 

networks with three dense layers, RNN : two layered bi-

directional LSTM with two dense layers). Table II 

describes the error result of prediction on pressurizer 

pressure. 

 

Table II: Error results on prediction of  pressurizer pressure. 

Model 

MAPE MSE 

In Out  In Out 

avg std avg std avg std avg std 

FNN 2.04 1.49 2.21 1.73 11.7 25.2 15 45 

RNN 0.7 0.62 0.88 0.85 3.2 9.1 4.96 17.3 

eQRNN 0.37 0.47 0.53 0.77 1.77 7.53 3.45 18.8 

 

According to the result, the proposed eQRNN shows 

47% and 40% lower MAPE on test in and out set 

compared to the baseline RNN model. In addition, MSE 

decreased 45% and 30% for each test sets. 

 

5. Conclusions 

 

We proposed novel deep learning model that predicts 

the simulation results on thermal hydraulic dynamics in 

order to broaden the spectrums of accident scenarios to 

be analyzed. Compared to the baseline deep learning 

model, mean absolute percentage error is decreased 43% 

in average.  
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