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1. Introduction 

 
High-flux advanced neutron application reactor, 

namely HANARO, is a 30 MW scale multi-purpose 

research reactor in Korea. As the only domestic research 

reactor, it is actively utilized in the field of neutron 

science. Due to its importance and wide applicability to 

academic and industrial application, robust and reliable 

operation is required. HANARO is firmly protected by 

multiple safeguards and operated by experienced 

professionals, however, more stringent safety standards 

are required after the Fukushima Daiichi nuclear disaster 

in 2011. In this circumstance, deep learning 

methodologies are actively being studied for reactor 

safety improvement, for example, event diagnosis [1, 2, 

3], reactor anomaly detection [4], sabotage detection [5], 

signal reconstruction [6], and probabilistic safety 

assessment [7]. 

In this research, we evaluate the feasibility of applying 

deep learning to anomaly detection with monitoring data 

from HANARO. Specifically, autoencoder based 

unsupervised anomaly detection is applied to cold 

neutron source (CNS) facility. Then we evaluate 

detection performance with synthetic abnormal data 

which is formed by injecting arbitrary bias. 

 

2. Anomaly detection with autoencoder 

 

Autoencoder is a class of neural network architecture 

composed of encoder and decoder networks. The 

encoder performs nonlinear dimension reduction and 

input data is converted to low dimensional latent vector. 

Then the decoder performs nonlinear dimension 

expansion and reconstructs original input data from a 

latent vector obtained from the encoder. Unsupervised 

deep anomaly detection can be conducted with 

autoencoder by learning latent vector of a normal dataset. 

Because autoencoder is trained to minimize 

reconstruction error on normal samples, autoencoder is 

able to successfully reconstruct normal input data. On the 

other hand, autoencoder fails to reconstruct abnormal 

samples resulting in high reconstruction error. Therefore, 

abnormal data can be classified by setting a threshold on 

reconstruction error (i.e., anomaly score). 

CNS is an add-on facility of HANARO that produces 

cold neutrons by decelerating thermal neutrons. CNS is 

operated in conjunction with the reactor, thus abnormal 

behavior of CNS may induce sudden shutdown or trip of 

the reactor.  

In this research, we train autoencoder with 43 CNS 

variables. From the historical database, we collect 

normal CNS data from the normal operation cycle when 

the reactor successfully finished its operation. Then we 

evaluate anomaly detection performance in terms of area 

under the receiver operating characteristic (AUROC) 

based on the synthetic abnormal data. 

 

3. Experiment setup 

 

3.1 Data preparation 

 

We obtained anonymized CNS variables from 13 

operation cycles. Then we divide 11 cycles for the 

training set and the most recent two cycles for the test set, 

respectively. There are 340,440 samples in the training 

set and randomly selected 300,000 samples are used for 

training and the rest 40,440 samples are used for 

validation. All data are normalized before training; z-

score normalization is applied per channel.  

 

Table 1. Data configuration 

 Number of data Cycle index 

Training 300,000 69~89 

(11 cycles) Validation 40,440 

Test 
41,760 91 

41,760 92 

 

3.2 Autoencoder 

 

We utilize simple autoencoder structure with 6 hidden 

layers and its details are described in Table 2. 

 

Table 2. Autoencoder configurations 

Model Structure 

Encoder Input(43)-Dense(256)-LReLU-

Dense(128)-LReLU-Dense(30)-LReLU 

Decoder Input(30)-Dense(128)-LReLU-

Dense(256)-LReLU-Dense(43) 

 

Note that the numbers in parenthesis indicate the 

number of neurons in the corresponding layer. The 

network is trained with adam optimizer with a learning 

rate of 0.001. The model is based on PyTorch. 
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3.2 Evaluation setup 

 

To evaluate anomaly detection performance, we 

generate synthetic abnormal data by adding bias 𝛽  to 

target channel 𝑐 in test sample. If we denote input vector 

as x = [𝑥1, … , 𝑥𝑑] ∈ ℝd, synthetic anomaly data  x̂ , 𝛽 =
0.1 and 𝑐 = 3, for example, is [x1, … , 𝑥3 + 0.1, … , 𝑥𝑑]. 

Synthetic anomalies are created with different 𝛽 and 𝑐. 

We change β from -1 to 1 (increased by 0.1) and c for 0 

to 43, respectively. Then we compared the synthetic 

anomaly x̂  can be distinguished to normal sample x 

according to the  reconstruction error. In doing this, we 

calculated two anomaly score: channel-wise and sample-

wise anomaly score. Channel-wise anomaly score is 

squared error of specific channel 𝑐  where 𝛽  is added. 

Sample-wise anomaly score is mean squared error of 

sample thus errors on other channels are included.  

Based on two anomaly score, we calculate AUROC 

which is a measure of separability between two 

distribution, i.e., anomaly score distribution of normal 

and abnormal data. ROC curve is a graph of true positive 

rate (y-axis) versus false positive rate (x-axis) according 

to the varying threshold; perfect classifier will be located 

at (0, 1). AUROC is the area under ROC curve. Because 

the perfect classifier located at (0,1), AUROC score close 

to 1 indicates two classes can be easily separated. On the 

other hand, 0 indicates that two classes are classified as 

completely opposite. Note than AUROC of uniform 

random classification is 0.5. 

 

4. Experiments 

 

4.1 Reconstruction on test set.  

 

Below Table 3 describes reconstruction error (average 

and standard deviation in parenthesis) of two test cycles 

in terms of mean squared error (MSE), and  mean 

absolute error (MAE). Compared to the errors on training 

and validation set, test set shows higher reconstruction 

errors. The result indicates different insights on 

generalization performance of trained model; the 

variation of observed data for each cycle may be greater 

than expected, or the model is overfitted. In application 

of anomaly detection, distinguishing anomaly is more 

important than improving generalization performance, 

hence we analyze detection performance with synthetic 

anomaly in following subsection. 

 

Table 3. Error comparison 

Error MSE MAE 

Training 0.02 (1.21) 0.06 (0.05) 

Validation 0.02 (1.38) 0.06 (0.05) 

Test 
91 0.91 (6.87) 0.48 (0.22) 

92 0.42 (0.11) 0.46 (0.07) 

 

4.2 Anomaly detection result 

 

We calculate AUROC of varying biases and channels, 

and visualize the result in forms of heat map. Figs 1 and 

2  are heatmaps of AUROC score where x axis represent 

target channel 𝑐 and y axis represents bias 𝛽. The color 

of the corresponding cell indicates the AUROC value.  

 

 

(a) Cycle index 91 

 

(b) Cycle index 92 

Fig.1. AUROC heat map on sample-wise score 

 

As can be seen, AUROC of channel-wise score is 

higher than sample-wise score because errors on other 

channels (channels where bias is not added) reduces the 

impact of synthetic bias on target channel. 

In addition, the impact of synthetic bias is differ 

according to the channel and some channels are more 

sensitive. For example, channel 12 to 21 shows high 

AUROC score compared to other channel, and channels 

0, 3, 4 shows lower AUROC scores on negative bias. 

 

5. Conclusions 

 

We propose autoencoder based anomaly detection 

framework for CNS facility in HANARO. We train deep 

autoencoder with observed CNS variables in normal 

operation cycles so as to learn normal latent features 

from input data. Then, anomaly detection performance is 

evaluated with synthetic abnormal data by adding bias 

per channel. The result show that due to averaging effect 

on reconstruction error, channel-wise anomaly score is 
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more sensitive to synthetic bias. In this regard, For the 

large scale system where the number of channel is a lot 

higher, channel-wise anomaly detection can be more 

effective.  

 

 

(a) Cycle index 91 

 

(b) Cycle index 92 

Fig.2. AUROC heat map on channel-wise score 

 

For future works, sensitivity analysis in original domain 

(because bias is added after data normalization) and 

improvement in deep neural network architecture is 

required. 
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