CFD Assessment of Steady-State Heat Loss during the Normal Operating Condition for the Advanced SMRs

Speaker: Lee Geon Hyeong

Advisor: Prof. Sung Joong Kim

Advanced Thermal-Hydraulic Engineering for Nuclear Application Lab. Department of Nuclear Engineering, Hanyang University

2021. 10. 21

2021, KNS, Autumn

- Backgrounds & Motivation
- Methodology
- Results and discussion

Conclusion and Future works

Backgrounds & Motivation Small Modular Reactor

Small Modular Reactor (SMR)

An advanced reactor that produces electrical power up to 300 MWe.

Backgrounds & Motivation Double Vessel Structure

Advanced SMRs

Double Vessel Structure

Backgrounds & Motivation Double Vessel Structure

Thermal condition during the normal operating condition

Backgrounds & Motivation Overview

Heat transfer mechanism of the i-SMR

Purposes

6

- 1. To understand the heat transfer mechanism of the ATOM
- 2. To make a quantitative comparison of heat loss according to gap conditions.
- 3. To identify the possibility of replacing the vacuum condition with the gas filler

CFD simulation Ansys Fluent

Methodology Geometry and Boundary Condition

Geometry and Boundary Condition

Variable [m]	Size	Variable [m]	Size
CNV height	14.886	RPV height	13.440
CNV outer radius	2.022-2.273	RPV outer radius	0.84 - 1.68
CNV thickness	0.09	PRV thickness	0.13

	Density (ρ) [kg/m³]	Specific Heat (Cp) [J/(kg·K)]	Thermal Cond. (k) [W/(m·K)]	Emissivity (ε) [-]
Carbon steel (RPV)	7,833	465	54	0.7
Stainless steel 316 (CNV)	7,870	490	13	0.4

RPV Temperature B.C

Steady-State, Constant coolant temperature **Divided into 3 parts**: Pressurizer, SG, Core **Area**: 56.78 m², 84 m², 70m² (respectively)

Solver Setting

Viscous Model		k-epsilon Realizable		
Density Model		Boussinesq approximation		
Radiation Model		DO Model (Gray-radiation)		
	Gradient	Least Squares Cell Based		
Spatial	Pressure	Body Force Weighted		
Discretization	Momentum	2 nd Order Upwind		
	Energy	2 nd Order Upwind		
Pressure-Velocity Coupling		Coupled		
Flow Courant Number		1		

Buoyancy effect			
1. Boussinesq approximation $a = a - \beta a (T - T)$			
Assume that the density change is linear			
2. Body Force Weighted			
Radiation effect			

Discrete Ordinates (DO) Model gray-radiation: emissivity is constant depending on wavelength

Convergence Criteria

Residual of continuity, k and epsilon: **below 10**-3

Residual of energy: **below 10**-8

Methodology Mesh Sensitivity

AHENA

A HENA

Heat transfer Mechanism

Xenon The best gas-type filler among the candidates

Conclusion and Future Works

b. due to increased heat loss in the gas filler

Thank you for your attention

E-mail: ghlee9605@hanyang.ac.kr

Conclusion and Future Works

Conclusion	Natural convection	 Flow velocity a. Gas-type filler is faster than vacuumed condition b. Without radiation case is faster than with radiation case 	
	Heat transfer Mechanism	 Radiation heat transfer Considering the vacuumed condition, the dominant heat loss mechanism 	
	Total heat loss	 ✓ with/without radiation model Air > Carbon dioxide > Argon > Xenon (Best gas-type filler) 	
	The possibility of replacing	 ✓ Xenon (Best gap filler) Difference in heat loss: within 10%→ enough possible 	
Future Works Compare the cost of a. Maintaining the vacuum condition b. due to increased heat loss in the gas filler		the vacuum condition d heat loss in the gas filler	

Appendix

Appendix

$$\underbrace{\rho \frac{\partial U_{j}}{\partial t}}_{I} + \underbrace{\rho U_{i} \frac{\partial U_{j}}{\partial x_{i}}}_{II} = -\frac{\partial P}{\underbrace{\partial x_{j}}_{III}} - \underbrace{\frac{\partial \tau_{ij}}{\partial x_{i}}}_{IV} + \underbrace{\rho g_{j}}_{V}$$

- I: Local change with time
- II: Momentum convection
- III: Surface force
- IV: Molecular-dependent momentum exchange (diffusion)
- V: Mass force

$$\tau_{ij} = -\mu \left(\frac{\partial U_j}{\partial x_i} + \frac{\partial U_i}{\partial x_j} \right) + \frac{2}{3} \delta_{ij} \mu \frac{\partial U_k}{\partial x_k}$$

5. Perform a scaling analysis of natural convection from an isothermal vertical flat plate in A infinite medium. The momentum equation, using the Boussinesq approximation, as

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \nu\frac{\partial^2 u}{\partial y^2} + g\beta(T - T_\infty),$$

and the energy equation, ignoring viscous dissipation, is

$$\rho \frac{\partial U_j}{\partial t} + \rho U_i \frac{\partial U_j}{\partial x_i} = -\frac{\partial P}{\partial x_j} - \mu \frac{\partial^2 U_j}{\partial x_i^2} + \rho g_j$$

대형원전주기기및 격납건물

Appendix

Backgrounds & Motivation Double Vessel Structure

AHENA

NuScale (USA)

Design and Manufacturer: NuScalepower

> 77 MWe/module, 12 modules, 924MWe

Innovative characteristics

- 1. No pump to circulate water (natural circulation)
- 2. Helical Coil Steam Generators (HCSG)
- 3. Immersed containment vessel
- 4. Maintaining vacuumed containment during normal operation.

Double Vessel

Reactor Pressure Vessel & Metal Containment Vessel

Buffer space (gap): Vacuumed condition

- 1. Minimizes reactor vessel heat loss
- 2. Prevent component corrosion
- 3. Not require reactor vessel insulation
- 4. Not require H₂ recombiner

NuScale

Backgrounds & Motivation Double Vessel Structure

Autonomous Transportable On-Demand Reactor Module (Korea)

ATOM 시스템 설계 개념

Design: Multi-university research team centered through the KAIST

- conceptual design reactor
- ➤ ~150MWe (450MWth)

Design Characteristics

- 1. supercritical-CO₂ cycle system (with air-cooling system)
- 2. Autonomous operation
- 3. Soluble boron-free coolant system
- 4. Nano-material and ATF

+ Double vessel structure

Gap material: Inert gas, stagnant

- ✓ Not require vacuum maintenance cost
- Generating additional heat loss

Need to confirm!

