KNS Autumn Meeting 2021, October 20-22, CECO Effects of coefficients of algebraic heat flux model on turbulent natural convective flow simulation in BALI configuration (21A-322) Seokwon Whang^a, Dasol Joo^b, Hyun Sun Park^{a,*}, Donghyun You^b ^aDepartment of Nuclear Engineering, NIFTEP, Seoul National University, Republic of Korea ^bDepartment of Mechanical Engineering, POSTECH, Republic ok Korea

Introduction

- Severe accident
 - Partial or complete 'melt-down' of the reactor core
- In-Vessel Retention by External Reactor Vessel Cooling (IVR-ERVC)
 - Safety evaluation: Thermal failure criterion
 - Internal heat flux vs. Critical heat flux.
 - Complex phenomena determining thermal behavior of the oxide layer \bullet
 - Turbulent natural convection, crust formation, mushy zone, etc.
 - Rayleigh number of oxide layer is up to 10¹⁷, which means strong turbulence

Sensitivity analysis of the model coefficients

- Algebraic heat flux model (AFM) coefficient:
- $\overline{\theta u_i} = -\frac{C_0 T}{C_1 u_i u_j} \frac{\partial \overline{\theta}}{\partial x_i} + \frac{C_2 \overline{\theta u_i}}{\partial x_i} \frac{\partial \overline{u_i}}{\partial x_i} + \frac{C_3 \beta g_i \overline{\theta^2}}{\partial x_i}$
- Time scale ratio for temperature variance
- $\frac{D\theta^2}{Dt} = \frac{\partial}{\partial x_k} \left| \left(\frac{\nu}{\Pr} \delta_{kl} + C_{\theta\theta} \overline{u_k u_l} \tau \right) \frac{\partial \theta^2}{\partial x_l} \right| + P_{\theta} \frac{1}{R} \frac{\varepsilon}{k} \overline{\theta^2}$

In this study, the impact of **R** and **C**₃ was investigated

AFM	C ₀	C ₁	C ₂	C ₃	R
Ref. [2]	0.2	0.25	0.6	0.385	0.5
Case 01	0.2	0.25	0.6	0.385	1.0
Case 02	0.2	0.25	0.6	0.385	1.5
Case 03	0.2	0.25	0.6	0.385	2.0
Case 04	0.2	0.25	0.6	0.2	0.5
Case 05	0.2	0.25	0.6	0.55	0.5

Temperature variance & turbulent heat flux behavior near wall is compared.

Ρ

• Advanced turbulence model is needed to simulate turbulent natural convection of oxide layer

Probe locations: top & side (as denoted in the right figure)

• LES and reference case

The result of reference case

 θ^2 : the peak location of side wall is delayed, and the maximum value is underestimated $\overline{\theta u_i}$: well-predicted except the vertical turbulent heat flux along the top surface.

• Effect of coefficients ($R \& C_3$)

Time scale ratio (R) •

Methodology

• Buoyancy-driven natural convection of the single phase with a volumetrically heat source

Side

- RANS equation (Energy equation)
 - Incompressible & Boussinesq approximation

Turbulent heat flux model

1. Eddy diffusivity model (EDM)

- **Limitation** of **EDM** reported in simulating complex phenomena such as **buoyancy flow**
- **Temperature variance**

- Validation cases
 - **BALI:** 1/4 circular slice shape (radius = 2m)
 - Ra' ~ 10¹⁶, Pr ~ 5.4

- $\frac{\partial T}{\partial t} + U_j \frac{\partial T}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\alpha \frac{\partial T}{\partial x_j} \overline{\theta u_j} \right) + \frac{q''}{\rho C_j}$
- 2. Algebraic heat flux model (AFM)

• Constant time scale ratio, R

- Grid generation
 - Mesh sensitivity study for cell number and

maximum y+

Conclusion and Future plan

- According to the previous work, the influence of coefficients, **R** and **C**₃ among the model coefficients was
- Number of two-dimensional cells ~20,000
- Maximum non-dimensional wall-distance, y+ < 1
- Numerical schemes and algorithms
- P-V coupling: PIMPLE
- Time: Crank-Nicolson + Euler
- Gradient, Laplacian and TMF/THF terms: Central

difference; Rest terms: Upwind

- Previous work [1]
 - **Numerical database** using LES (Dynamic global-coefficient subgrid-scale model)
 - Notable results
 - Dissipation model for temperature variance equation: $R \sim 2$
 - 2. Near top surface : $G_{\theta i} >> P_{\theta i}^T, P_{\theta i}^U$
 - 3. Along the side wall (wall-normal): $P_{A_i}^U \sim 0$

- evaluated in this study.
- By adjusting the **R** value, it was possible to predict the maximum value of θ^2 (Case 01), and it was confirmed that THF behavior varies greatly depending on the **R & C₃**.
- It is expected that a model that can predict the physical behavior of major parameters can be proposed through sensitivity analysis including remain coefficients in the future work.

Acknowledgment

This work was supported by KOREA HYDRO & NUCLEAR POWER CO., LTD (2019-Tech-05, "High-Fidelity Numerical Analysis of Highly Turbulent Corium Pool for In-Vessel Retention (IVR) Strategy Feasibility Assessment")

References

[1] Joo, D. et al., 2022. Validation of large-eddy simulation on turbulent heat transfer for highly buoyant flow in a corium pool, NURETH-19.

[2] Shams, A., 2018. Towards the accurate numerical prediction of thermal hydraulic phenomena in corium pools. Ann. Nucl. Energy 117, 234–246.

*Corresponding author E-Mail: hejsunny@snu.ac.kr Website: https://anergz.com/

ARTS Lab

Department of Nuclear Engineering, NIFTEP, Rm#416, Bldg#31, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea