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1. Introduction 
 

With the rapid advance of artificial intelligence (AI) 
technology, there have been enormous number of 
applications across the various fields. Nuclear field is 
also following this trend, and there have been many 
studies that utilize AI models for solving problems such 
as event diagnosis and automated/autonomous operation. 

However, deep neural network (DNN) which takes the 
biggest portion of recent AI technology applications has 
a limitation that it is not transparent and has low 
explainability. In the case of DNN-based model, it is 
difficult to know the internal logic of the model or how 
the model deduces outputs from given input. Due to this 
limitation, there is a hesitation on practical application of 
DNN-based models to the safety-critical fields and the 
fields related to moral/legal issues, although their 
performances are acceptable. 

To overcome the limitation of low explainability, a 
number of explainable AI (XAI) methods have been 
proposed. XAI methods can provide detail explanations 
such as model’s internal logics and relations between 
inputs and outputs. However, although the explainability 
issue is crucial for safety-critical nuclear field, there is a 
lack of studies that dealing with XAI. 

In this study, as an effort to enhance the explainability 
and the practicality of AI models in nuclear field, layer-
wise relevance propagation (LRP) [1] was investigated, 
which is one of the XAI methods that has shown better 
performance in many applications compared to other 
XAI methods.  

The rest of paper is organized as follows. In chapter 2, 
brief explanations on XAI and LRP are provided. In 
chapter 3, experiments for feasibility check are described 
and chapter 4 concludes the paper. 
 

2. Preliminaries 
 
2.1 Explainable Artificial Intelligence 

 
Explainable artificial intelligence (XAI) is a 

technology that makes human to easily understand the AI 
model. Most of AI models are different from human in 
terms of data processing and problem solving methods. 
For example, AI model recognizes images with pixel-
wise RGB values while human does not. XAI is proposed 
to alleviate the difficulty of understanding the AI 
model’s internal processes or the reason why certain 
output is deduced.  

XAI can be applied for various AI methods. However, 
as not only DNN’s popularity but also their inherent 
explainability issue, most of recent XAI related studies 
are focusing on explaining DNN-based models.  

There are various kinds of XAI methods, and they 
have their own range of application, advantages and 
limitations. These methods can be classified according to 
their type of applications, type of explanations and range 
of explanations. Table I is showing the taxonomies for 
classifying XAI methods, suggested by Yu Zhang et al. 
[2].  
 

Table I: Taxonomy for classifying XAI methods 

Dimension Category Description 

Type of 
applications 

Passive Post-hoc explain 

Active 
Actively change the 
network architecture or 
training processes 

Type of 
explanations 

Examples Provide examples 

Attributions 
Assign credit to the 
input features 

Hidden 
semantics 

Make sense of hidden 
neurons/layers 

Rules Extract logic rules 

Range of 
explanations 

Local 
Explain on individual 
samples 

Semi-local 
In between the local 
and global 

Global 
Explain the network as 
a whole 

 
In this paper, among various XAI methods, LRP that 

belongs to the passive/attributions/local category is 
selected. Brief descriptions on LRP are provided in next 
sub-chapter.   

 
2.2 Layer-wise Relevance Propagation 
 

Layer-wise relevance propagation (LRP) [1] is an XAI 
method that can be applied for DNN-based models. LRP 
explains the model by calculating ‘relevance’, which 
implies the level of contribution of specific part of the 
input for deducing the output. Since relevance 
calculation processes are mathematically well-defined, 
LRP tends to deduce clearer result compared to other 
XAI methods that belongs to the same category. 
Moreover, LRP tends to deduce more informative results 
as the relevance itself has same meaning to the 
‘importance’ of input’s corresponding part. Figure 1 is a 
schematic of LRP. 
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Fig. 1. Schematic of LRP 
 

LRP is based on two fundamental concepts. First 
concept is the relevance conservation law, which means 
that the sum of the relevance is always conserved at the 
each layer within the model. Second concept is the 
relevance propagation rules, which are formula for 
relevance calculation through the layers. Relevance 
propagation rules include various formula that follows 
relevance conservation law, and the user should define 
which formula to be applied. Figure 2 is a summary of 
two core concepts of LRP. 
 

 
Fig. 2. Examples of (a) relevance conservation law and (b) 
relevance propagation rules 
 

Although LRP has shown better performance 
compared to many other XAI methods, there are 
limitations that it is difficult to apply, and requires high 
computation resource. Additionally, as a limitation not 
only for LRP but also for many XAI methods, there is a 
problem that most of recent studies are focusing on 
classification problems with image and natural language 
data [3, 4]. AI models applied to the nuclear field are 
mostly based on time-series data, but related studies are 
scarce. LRP can be applied for every kind of data and 
every DNN architectures in theory. However, for the 
practical application and meaningful results, it is needed 
to conduct additional studies. 
 

3. Experiments 
 

In this study, to check the applicability of LRP, it was 
applied for accident diagnosis problem which is a 
classification problem based on time-series data. The 
experiments can be summarized into three steps 
including data acquisition and processing, model 
development and training, and application of LRP. 

  
3.1 Data Acquisition and Processing 

 
It is needed to develop a target model first in order to 

apply LRP. For the experiments, since accident diagnosis 
is one of the most popular problem for applying AI 

model, a simple accident diagnosis model was developed 
for feasibility study. 

To acquire the data for model training and testing, 
MARS (Multidimensional analysis of reactor safety) 
code developed by KAERI [5] was used. Considered 
accident scenarios were SGTR (Steam generator tube 
rupture) with break sizes A, 2A, 4A, and MSLB (Main 
steam line break) with break sizes A, 2A. Control of 
several components were included to broaden the range 
of data distribution. For 900 seconds from the emergency 
reactor trip, 19 kinds of instrumentation signals were 
obtained. List of obtained instrumentation signals are 
shown in Table II. 

Totally 104,615 datasets were obtained including 
62,775 SGTR datasets and 41,840 MSLB datasets. 
Among them, 84,615 datasets consist of 50,775 SGTR 
datasets and 33,840 MSLB datasets were used for model 
training and rest of 20,000 datasets consist of 12,000 
SGTR datasets and 8,000 MSLB datasets were used for 
model testing. 

After the simulation, min-max scaling was applied to 
make the measurement values between zero to one.  

 

Table II: List of obtained instrumentation signals and their 
units 

Instrumentation signals Units 
Reactor power 
SG* 1/2 level difference 
RCP* 1 on/off 
RCP 2 on/off 
RCP 3 on/off 
RCP 4 on/off 
SG 1 level (wide range) 
SG 2 level (wide range) 
SG 1 level (narrow range) 
SG 2 level (narrow range) 
FW* flow to SG 1 
FW flow to SG 2 
AFW* flow to SG 1 
AFW flow to SG 2 
PZR* pressure 
PZR level 
RCS* subcooling margin 
SG 1 pressure 
SG 2 pressure 

% 
% 
- 
- 
- 
- 
% 
% 
% 
% 

L/sec 
L/sec 
L/sec 
L/sec 

kg/cm2A 
& 
oC 

kg/cm2A 
kg/cm2A 

*SG: steam generator, RCP: reactor coolant pump, FW: 
feedwater, AFW: auxiliary feedwater, PZR: pressurizer, RCS: 
reactor cooling system 

3.2 Model Development and Training 
 

For the experiments, a simple accident diagnosis 
model with five fully-connected layers was developed. 
As activation functions, rectified linear unit (ReLU) 
activation function was applied for all layers except the 
last layer with log-softmax activation function. The 
model receives a vector with length 17,100 that includes 
19 kinds of instrumentation signals for 900 seconds, and 
deduces a vector with length 5 that includes probabilities 
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for each accident category. Figure 3 is a schematic of the 
developed accident diagnosis model. 
 

 
Fig. 3. Schematic of the developed accident diagnosis model 
 

Negative log-likelihood function was used as a loss 
function, and Adam optimizer [6] with default setting 
was used as an optimizer. The model was repeatedly 
trained with applying various hyperparameter sets. The 
model that shown best performance for testing data was 
applied at the next LRP application step. Selected model 
shows about 92.8% accuracy for entire data, and the 
accuracy for training data was slightly higher.  

 
3.3 Application of LRP 
 

After the development of accident diagnosis model, 
LRP was applied for the randomly selected datasets. For 
the relevance propagation rules, LRP-zB rule (equation 
1) was applied for input layer and LRP-ε rule (equation 
2) was applied for another layers. Equations for these two 
rules can be represented as follows. 

 

𝑅௜ = ∑
௔೔௪೔ೕି௟೔௪೔ೕ

శି௛೔௪೔ೕ
ష

∑ ௔೔௪೔ೕି௟೔௪೔ೕ
శି௛೔௪೔ೕ

ష
೔

𝑅௝௝                                    (1) 

𝑅௜ = ∑
௔೔ఘ(௪೔ೕ)

ఌା∑ ௔೔ఘ(௪೔ೕ)బ,೔
𝑅௝௝                                            (2) 

           
Where Ri is i-th node’s relevance value, ai is i-th 

node’s value, li is maximum input value, hi is minimum 
input value, wij is weight between node i and j, wij

+ is 
max(0, wij), wij

- is min(0, wij), ε is stabilization factor, and 
ρ is activation function.  

Several parts of the result are shown in Figure 4. The 
graphs at upper positions are about the instrumentation 
signals, and the graphs at lower positions are about the 
relevance values. The red line in the relevance graph 
shows the mean value of 900 relevance values for 
corresponding instrumentation signal. The green line in 
the relevance graph shows the mean value of total 17,100 
relevance values. If the red line is above the green line, it 
implies that the signal has higher importance than many 
other signals. In contrast, if the red line is below the green 
line, it implies that the signal has lower importance than 
many other signals. 

Cases (a), (b) and (c) in Figure 4 are showing 
representative patterns of LRP analysis results.  
 

 
Fig. 4. Examples of LRP application result 
 

Case (a) is the example about when the signal has 
more influence compared to other signals over all time 
steps. As relevance values are consistent over all time 
steps, correlation analysis could deduce similar results 
with LRP. 

Case (b) is the example about when the signal has 
more influence compared to other signals, but not for 
every time steps. As shown in graph, relevance values at 
the front part are higher than relevance values at the back 
part. Relevance values at the back part are near the green 
line, implying that the corresponding elements have less 
influences on classification result. 

Case (c) is the example about when the signal has less 
influence compared to other signals, but not for every 
time steps. Similar to the case (b), relevance values at the 
front part are higher than the relevance values at the back 
part. However, as relevance values at the back part have 
negative numbers and cancelling the effect of front part, 
overall influence of the signal is decreased. Negative 
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relevance values imply that the corresponding elements 
have negative influences on classification result. 

From the cases (b) and (c), it was revealed that the 
application of LRP could lead to the acquisition of 
additional information that cannot be found by the 
conventional methods.  

For the image data, LRP application leads to highly 
intuitive results that high relevance values are deduced 
for the pixels around the object boundaries. However, 
although it was shown that LRP application could reveal 
the ‘important parts’ also for the time-series data, there 
is a limitation that the results are not much intuitive and 
may require domain knowledge for proper interpretation.  

 
4. Conclusion 

 
In this study, LRP which is one of the XAI method 

was adopted to nuclear field for enhancing the AI 
model’s explainability. To check the applicability of 
LRP, experiments were conducted that apply LRP to the 
simple accident diagnosis model. Although it is difficult 
to quantitatively compare the degree of explainability, it 
was empirically found that the application of LRP could 
provide more information than conventional methods.  

Through the application of LRP, it would be possible 
to easily find improvements such as improving the 
accuracy in the development stage of AI-based operation 
support systems. Even after the development, additional 
information given by LRP can be used for further 
improvements with proper expert supervisions. 
Application of LRP would be beneficial for not only in 
the terms of performance, but also for complementary 
cooperation between human operator and operation 
support system, since it enables the operator to conduct 
detailed review on AI model’s output.  

Current XAI studies are mostly focusing on 
classification problems with image or natural language 
data, and therefore an AI model for the accident 
diagnosis-which is a representative classification 
problem in nuclear field-was used in the experiments. 
However, since AI models in nuclear field are applied to 
various problems other than classification problem, it is 
needed to investigate on how to apply XAI and LRP for 
such problems. Moreover, it is needed to conduct studies 
on other XAI methods to find appropriate method for 
each problem. 
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