The 1st Radioisotope Separation Experiment for the Sr-82 Production in KOMAC

Kye-Ryung Kim^a, Sang-Pil Yoon^a, Yeonji Lee^a, Yong-Sub Cho^a, Yeong-Su Ha^b ^aKorea Atomic Energy Research Institute ^bOsong Medical Innovation Foundation (K-Bio) (kimkr@kaeri.re.kr)

01 INTRODUCTION

- Production of radioisotopes such as Sr-82, Cu-67, Ge-68, etc. is one of KOMAC's major accelerator applications.[1]
- The construction of target irradiation facilities for the production of radio-isotopes at KOMAC using 100-MeV linac was completed in 2016, and chemical process facilities were completed in March of this year and licensed.[1-2]
- The Sr-82 is the parent nuclide of Rb-82 used for the diagnosis of myocardial infraction, and it is manufactured and supplied to users in the form of a Sr-82/Rb-82 generator.
- KOMAC has been developing Sr-82 production technology using a high-energy proton accelerator since 2019.
- In this paper, we will deal with the first separation and purification experiment in which the separation and purification process developed so far is applied to an irradiated target.

02 EXPERIMENT – Target Irradiation

- Target : RbCl Pellet
 - RbCl Pellet
 - Size : diameter 3 cm, thickness 0.75 cm
 - Weight : 14.5 g
 - Cladding
 - Material : STS304
 - Helicoflex Seal
 - Size : diameter 6 cm, thickness 1.5 cm
- Nuclear Reaction : ⁸⁵Rb (p,4n)⁸²Sr
- Proton Beam Irradiation Condition
 - Energy : 100 MeV (~67 MeV to Target)
 - Peak Current : 1 mA
 - Pulse Width : 200 usec
 - Repetition Rate : 2 Hz
 - Irradiation Time : 1, 2 hours

02 EXPERIMENT – Chemical Process

- KOMAC has been developing Sr-82 production technology using a high-energy proton accelerator since 2019. The separation and purification process of Sr-82 has been developed using stable isotope compounds such as RbCl or SrCl₂ until the approval of the RI production facility.
- The process procedure was developed by referring to the research results of foreign research institutes such as BNL and ARROMAX, [3] and detailed conditions were determined by reflecting the ICP-MS analysis results for each stage of the process.

02 EXPERIMENT – Chemical Process

- KOMAC has been developing Sr-82 production technology using a high-energy proton accelerator since 2019. The separation and purification process of Sr-82 has been developed using stable isotope compounds such as RbCl or SrCl₂ until the approval of the RI production facility.
- The process procedure was developed by referring to the research results of foreign research institutes such as BNL and ARROMAX, [3] and detailed conditions were determined by reflecting the ICP-MS analysis results for each stage of the process.

02 Experiment – RI Hood

RbCl Target Solution

Eluted Sr-82 in 0.1 M HCl

RbCl Target Solution

Nuclides	Gamma Energy [keV]	Activity [Bq]	Activity [uCi]	Activity @ EOB [uCi]
Sr-85	514.01	52177.10	1.41	
Rb-83	520.41	405200.00	10.95	
Rb-83	529.64	411017.78	11.11	
Rb-83	552.65	399012.11	10.78	
Sr-82/Rb-82	776.52	96975.54	2.62	7.99
Rb-84	881.61	407150.35	11.00	
Rb-86	1077.00	111913.69	3.02	

Eluted Sr-82 in 0.1 M HCl

Nuclides	Gamma Energy [keV]	Activity [Bq]	Activity [uCi]	Activity @ EOB [uCi]
Sr-85	514.01	49657.54	1.34	
Sr-82/Rb-82	776.52	83676.13	2.26	6.89
Rb-84	881.61	582.07	0.016	
Sr-82/Rb-82	1077.00	82881.06	2.24	6.83

- Separation & Purification Yield : ~ 85 %
- Sr-85/Sr-82 : ~0.60

04 CONCLUSION

- The first RI separation and purification process experiment on irradiated target in KOMAC was successfully performed.
- Through this experiment, the effectiveness of the separation and purification process developed for the production of Sr-82 was validated.
- The separation & purification yield is more than 85 % for this experiment.
- The Sr-82 obtained through this experiment was used for the column adsorption experiment for Sr-82/Rb-82 generator development currently in progress.
- We will try to improve the process yield and the activity of Sr-82 continuously.
- For the higher activity Sr-82, the longer target irradiation time is essentially required.

05 Acknowledgement & Reference

Acknowledgement

This work was supported by MSIT (Ministry of Science and ICT) and by the National Research Foundation of Korea (NRF) under Grant number NRF-2017M2A2A2A05016601.

Reference

- [1] Kye-Ryung Kim, Myung-Hwan Jung, Sang-Pil Yoon, Yi-Sub Min, Yong-Sub Cho, "Medical RI development plan of KOMAC", Journal of Korean Physics Society, Vol.71, No.11, pp.818-823. 2017.
- [2] Yi-Sub Min, Jeong-Min Park, Myung-Hwan Jung, Hyeok-jung Kwon, "Status of RI Production Facilities using the Proton Beam in KOMAC", Transactions of the Korean Nuclear Society Autumn Meeting, Yeosu, Korea, October 25-26, 2018.
- [3] Yeong Su Ha, Sang-Pil Yoon, Han-Sung Kim, and Kye-Ryung Kim, "Comparative study of ⁸²Sr separation/ purification methods used at Brookhaven National Laboratory and ARRONAX", Journal of Radiopharmaceuticals and Molecular Probes, Vol. 5, No.2, pp.71-78, 2019.