

Light Output Evaluation of 3D-Printed Plastic Scintillators Irradiated with 100 MeV Proton Beams at KOMAC

Han Cheol Yang, Dong Geon Kim, Sangmin Lee, Tae Hoon Kim, Jongheon Kim, Yong Kyun Kim * Department of Nuclear Engineering, Hanyang University, Seoul, Korea *Corresponding author: ykkim4@hanyang.ac.kr

Introduction

Plastic scintillators have been used in various fields as radiation detectors for the use and control of radiation sources. The availability of plastic scintillator in extreme conditions such as space environments is emerging as a technical issue. In this environment, radiation hardness is an important issue to maintain the detector normal. There have been prior studies on the change of plastic scintillators by irradiation with electron beams or gamma rays, but studies on high-energy protons are insufficient.

In this study, plastic scintillators made of different monomers were exposed to high-energy proton beams at different doses, and relative light output was observed for each plastic scintillator.

Materials and Methods

1. Manufacture of Plastic scintillators

Three of these scintillators are made from different monomers using a 3D printer, and other compositions are shown in Table 1. BC408, a commercial plastic scintillator based on polyvinyltoluene, was selected as a comparator. All scintillators are made in sizes of $10 \times 10 \times 10$ mm3.

Table 1. Four types of plastic scintillators composition

Composition	PPO	ADS086BE	TPO	
Sample type	(wt%)	(wt%)	(wt%)	
BPA(EO)15DMA				
D0241	1.5	0.03	0.1	
OPPEA				
BC408	(Commercial scintillator)			

Dose (Gy)

Smoothed data

2. Method of proton beam irradiation

3. Measurement of scintillation light output

Figure 3. Measurement system for scintillation light output.

Relative light output (Relative LO) of each scintillator sample was calculated as in the following equation.

Relative LO (%) =
$$\frac{C_{after}}{C_{before}} \times \frac{Q_{before}}{Q_{after}} \times \frac{G_{before}}{G_{after}} \times 100$$
 C : Compton edge channel
Q : Quantum efficiency
G : Amplifier's gain

Figure 4. Changes of relative light output

Figure 5. Appearance changes according to dose

Table 4. Absolute light output (photons/MeV) of each sample

	Non- irradiated	0.1k Gy	1k Gy	10k Gy	100k Gy
BC408	10,000	10,400	10,500	10,240	8,100
BPA(EO)15DMA	1,750	1,670	1,630	7,600	1,380
D0241	7,170	6,760	6,810	5,880	1,720
OPPEA	6,870	7,130	6,850	7,020	6,140

Proton hardness

 \rightarrow BPA(EO)15DMA, D0241 – 1k Gy • 10k Gy BPA(EO)15DMA sample was missed and predicted.

Exposed flux [#/cm2sec]	2.6E+08	5.49E+10
Dose rate [Gy/h]	1k	200k
Beam shape	Flat	Gaussian
Exposed beam area	100 × 100 mm2	d = 30 mm
	(Plane)	(Circle)

- Each sample exposed 100MeV proton beam conducted by Korea Multi-Purpose Accelerator Complex (KOMAC)
- Uniformity was measured as 8.86% in TR102 and 6.20% in TR103 at the sample position.
- Energy was measured as 97.9 ± 1.0 MeV in TR102 and 96.4 ± 0.1 MeV in TR103

 \succ BC408, OPPEA – 10k Gy

Conclusion

In this study, we aimed to investigate the changes of relative light output from plastic scintillator when it exposed to high energy proton beam. The result shows that scintillators using D0241 are relatively vulnerable to highenergy protons compared to the rest types of scintillators. And finally, the longterm operation of plastic scintillation detectors in high-energy proton fields, such as the space environment, can be considered in the future.

RAdiation Instrument & Sensor Engineering Lab.