SPACE analysis of loss of SI injection concurrent with SBLOCA for SMART-ITL

Jong Hyuk Lee^{a*}, Sung Won Bae^a, Kyung-doo Kim^a

^aKorea Atomic Energy Research Institute, Yuseong-gu, Daejeon, 34057, Rep. of Korea

*Corresponding author: leejonghyuk@kaeri.re.kr

Background and Objective

- The PIRT for SMART100-DECs has been developed to identify the T-H phenomena that could happen during the DECs without core melting of SMART100.
- Based on the PIRT, we also derive the improvement or validation items for T-H model of the SPACE.
- In this regard, T-H models of the SPACE has been

Steady-state condition

	EXP	SPACE	Diff(%)
Initial Core Power (kW)	1,711	1,711	BC
Core inlet & Outlet (K)	568.55	568.30	-0.043
	594.75	594.17	-0.098
SG primary Inlet & Outlet (K)	594.95	593.96	-0.166
	571.45	570.00	-0.253
RCS flow rate (kg/s)	11.525	11.52	adjusted
Pressure (MPa)	15	15	BC
PZR temp (K)	613.15	615.25	0.342
PZR water level (m)	3.115	3.074	-1.316
SG sec. Inlet & Outlet (K)	502.85	502.86	BC
	590.15	593.93	0.639
SG flow rate (kg/s)	0.784	0.784	BC
FW Pressure (MPa)	5.72	5.72	BC
MS Pressure (MPa)	5.63	5.69	1.066

improved to simulate the SMART applications.

Objectives of this paper

To validate the capability of the SPACE for SMART applications, SMART-ITL F102 test for SBLOCA concurrent with partially passive safety injection fail was selected.

SMART-ITL F102 test

- **Scenario**
 - SBLOCA initiates by the break at SI line.
 - RCS pressure begins to decrease and a reactor trip signal is generated by Low PZR pressure.
 - Although CMTAS and PRHRS were generated, all the CMTs and PRHRS are assumed to be failed.
 - When RCS pressure reaches to the SITAS set-point, only SITs are injected into the SI line.

Sequence of Events

Transient results

Event	Setpoint
Initiation of Break	_
Generation of RCS trip signal	
- Turbine trip	
- RCP coastdown	LPP+1.1 s
- FW stop	
- CMTAS	
Control Rod Injection	LPP+1.6 s
PRHRAS	LPP+5.2 s
MSIV / FIV close	PRHRAS+5.0 s
SITAS	$P_{PZR} = 2 MPa + 1.1 s$
SIT injection	SITAS+1.1 s
Test Ended	

Conclusions

The SPACE calculation for major parameters

- show reasonable agreements with the SMART-ITL test.
- The improve T-H model of the SPACE for SMART applications well implemented and we can conclude that the SPACE can be utilized for SMART applications.
- As a further work, we will conduct the sensitivity study for the break flow to more accurately predict the behavior of SBLOCA in the SMART-ITL test.

한국원자력연구원KAERIKorea Atomic Energy Research Institute

Virtual Nuclear Power Plant Technology Development Division