Transactions of the Korean Nuclear Society Autumn Meeting

Changwon, Korea, October 21-22, 2021

Prediction of Quenching of Hot Solid Sphere under Uniform Flow with STAR-CCM+

Jeonghyeon Eom^{*a*}, Insik Ra^{*a*}, Giyoung Tak^{*a*}, Haeyong Jeong^{*a*}

^a Sejong University, Department of Quantum and Nuclear Engineering, 209, Neungdong-ro, Gwangjin-gu, Seoul, Seoul, Korea

**Corresponding author: hyjeong@sejong.ac.kr*

Introduction

- The fuel-coolant interaction (FCI) affects the formation of the corium debris generated in the lower cavity, and the temperature distribution of the debris is determined according to the cooling property.
- Quenching is a phenomena in which unstable vapor film collapses and heat transfer occurs through direct contact between liquid coolant and particles, resulting in a sharp decrease in particle surface temperature.
- In order to simulate the phenomena more accurately, it is very significant to model the heat transfer process in detail.
- As a result, it is necessary to refine the overall heat transfer coefficients, including nucleate boiling, transition boiling, and film

boiling.

• Physical Modeling

- Volume of Fluid multiphase
- K-ε turbulence
- Two-layer all y+ wall treatment
- Transition boiling model
- Segregated Flow and Multiphase Temperature
- Fig. 1 Boiling curve of STAR-CCM+ built-in transition boiling model provides a correlation including nucleate and transition boiling region.

• Result

• Fig. 4 Result of simulation graph

• Fig. 5 Result of quenching experiments

• Simulation Methodology

• Table. 1 Initial condition of quenching experiments

Sphere material↩	Stainless steel↩
Sphere diameter↩	3 cm<⊐
Initial sphere temp.↩	800 °C<⊐
Subcooled temp.↩⊐	35.6 °C∈⊐
Flow velocity↩	0.035 m/s∈⊐

• Fig. 2 The geometric shape of experimental facility

• Fig. 6 Volume fraction of steam scene during the quenching section

Fig. 7 Velocity vector scene during the quenching section

• Fig. 3 Boiling curve of modifying built-in transition boiling model

Conclusion

- Simulations using the modified transition boiling curve show similar results to the experimental results.
- It is very similar to the experiment of vapor film collapse and temperature drop in quenching area.
- Sophisticated overall heat transfer coefficients, including nucleate, transition, and film boiling, will reduce uncertainty in interpreting severe accidents in nuclear power plants.