

<u>Seoul National University</u> Dept. of Nuclear Engineering

A Simulation Study on the Sensitivity of Neutron Logging Sonde Response by Formation Thickness

Ill-hyuk Han, Geehyun Kim*

Department of Nuclear Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, Korea

*Email:gk.rs@snu.ac.kr

INTRODUCTION

> Neutron Logging Sonde

- The method for configuring porosity or rock type of stratum
- Consists of two neutron detectors (CLYC-6) and one neutron source (AmBe)

Rock Type

- Sedimentary rocks : Limestone, Sandstone
- Igneous rocks : Granite, Basalt, Diorite, Gabbro

Fluctuation of Neutron Sonde Response Curve

- Two components in fluctuation of neutron sonde response curve
 - ✓ Thermal neutron region : Effects of rock type around neutron detector
 - ✓ Epithermal and fast neutron regions : Effects of rock type around neutron source

• Shale : Sedimentary rock especially including lots of water (neutron absorber)

CLYC-6 Scintillator (Cs₂LiYCl₆:Ce)

- Neutron detection with PSD technique (Pulse Shape Discrimination)
- Neutron Reaction
 - ✓ 6 Li(n, α)³H : ~ 940 barns
 - ✓ ${}^{35}Cl(n, \alpha){}^{32}P / {}^{35}Cl(n, p){}^{35}S : 100 300 \text{ mbarns}$

METHODS

> Monte Carlo Simulation Geometry (MCNP6.2)

- Thickness of thin rock layer : From 10 cm to 100 cm with 10 cm interval
- Sonde detector position : From +25 cm to -225 cm with 5 cm interval
 - \checkmark Sonde position defined as position of sonde bottom surface

Fig. 5 Near detector response curve with 100 cm thin rock layer (a) Similar rock type formation (b) Different rock type formation (c) Formation including Shale

(a) Similar Rock Type Formation

- Minor difference in epithermal and fast regions with two sedimentary rocks
- Sonde position at 0 cm : Neutron source near to Sandstone, neutron detector in Limestone
 ✓ Thermal neutron region same as Limestone case
- Sonde position at -40 cm : Neutron source in Limestone, neutron detector in Sandstone
 ✓ Thermal neutron region same as Sandstone case

(a) Thermal neutron region

(b) Different Rock Type Formation

- > Neutron Sonde Detector Sensitivity of Thin Rock Layer Thickness
- Limestone-Sandstone Case
 ✓ Similar rock type formation

Sonde position at -40 cm : Neutron source in Granite, neutron detector in Limestone

(b) Epithermal & fast neutron regions

- ✓ Thermal neutron region same as Limestone case
- ✓ Epithermal and fast regions same as Granite case
- Sonde position at -130 cm : Neutron source in Limestone, neutron detector in Granite
 - ✓ Thermal neutron region same as Granite case
 - Epithermal and fast regions same as Limestone case

Fig. 7 Spectrum analysis of different rock type formation (Limestone-Granite)(a) Thermal neutron region(b) Epithermal & fast neutron region

(c) Formation including Shale

• Due to Shale including lots of water, large difference of neutron counts in all regions, resulting in no fluctuations

- ✓ Both are sedimentary rocks
- Granite-Sandstone Case
 - ✓ Different rock type formation
 - ✓ They are igneous rock and sedimentary rock, respectively
- Shale-Sandstone Case
 - ✓ Formation including Shale
 - ✓ Shale is effective neutron absorber
- Saturation of neutron sonde response at thin rock reference signal (red dash line) when its thickness is above 100 cm

CONCLUSIONS

- Stratum thickness sensitivity of neutron sonde is good enough to configure thin rock type when its thickness is above 100 cm.
- Neutron sonde response curves are fluctuated around boundary of rock due to difference of neutron affect in detector and source.
 - Thermal neutrons are affected by rock around neutron detector
 - Epithermal and fast neutrons are affected by rock around neutron source

Autumn Meeting of the Korean Nuclear Society – CECO, Gyeongsangnam-do, Korea, October 20-22, 2021