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1. Introduction 

 
Multi-objective optimization should be conducted in a 

design process given that airfoil design entails a number 

of aerodynamic requirements, such as high lift, low drag, 

and stall characteristics [1]. These aerodynamic require-

ments can be obtained through flow field analysis using 

computational fluid dynamics (CFD) simulations. 

However, CFD simulations require a lot of time and 

expensive computation in the air foil design process. 

Recently, deep learning [2] has received considerable 

attention in the field of fluids. Therefore, some 

researchers are committed to predicting airfoil flow 

fields. Afshar et al. [3] proposed an approximation model 

based on convolution neural networks (CNN) to predict 

the velocity and pressure field for new geometries under 

new flow conditions. Sekar et al. [4] used CNN to 

parameterize the airfoil image with some useful 

parameters. 

In this research, we propose an airfoil flow field 

prediction model that uses deep learning technology 

instead of CFD simulation. Among the various deep 

learning models, pix2pix method [5] for image-to-image 

transformation has been selected. 

 

2. Methods 

 

This section describes the deep learning techniques 

used to predict the airfoil flow field and the data used to 

train the deep learning. 

 

2.1 Generative adversarial network (GAN) 

 

A GAN [6] is one of the generative models and one of 

the most actively research topics in deep learning. The 

GAN architecture consists of a generator and 

discriminator, which generate data through adversarial 

training. The generator produces fake data from random 

vector noise and the discriminator distinguishes between 

real and fake data. The generator is trained to generate 

data that discriminator cannot distinguish from real data, 

and discriminator is trained to accurately distinguish fake 

data from real data. The architecture of GAN is shown 

in Fig. 1(a). 

 

2.2 Conditional Generative Adversarial Networks 

(cGAN) 

 

cGAN [7] is a variant of GAN and has been proposed 

to conditionally generate data. These cGAN conditions 

can be input in various forms such as noise vectors, 

images, and class labels. The architecture of the cGAN 

is shown in in Fig.1(b)., where the input Z and condition 

C are combined and provided to the generator, and the 

input to the discriminator is also provided combined with 

condition C. 

 
Fig. 1. architecture of GAN and cGAN. 

 

2.3 Image-to-Image Translation with Conditional 

Adversarial Net (pix2pix) 

 

pix2pix is a universal solution to the image-to-image 

translation problem utilizing cGANs. The generator of 

pix2pix is a U-net architecture that is universally used in 

the image-to-image translation. U-net is a structure that 

directly connects the encoder layer and the decoder layer 

through 'skip connection'. Through skip connection, 

more stable learning than a simple encoder-decoder 

architecture is possible. The discriminator employs a 

convolutional PatchGAN classifier. PatchGAN classifies 

images by patches of a specific size, rather than the entire 

area. This trains the generator to produce more realistic 

images. The architecture of the pix2pix is shown in Fig. 

2. 

 
Fig. 2. Structure of pix2pix [3] 

 

2.3 Airfoil Flow Field Prediction with pix2pix 

 

In this study, pix2pix is used to predict the airfoil flow 

field. It uses a 19-coordinate image of the airfoil as input 

and the image of the airfoil flow field as the target. 

Additionally, the angle of attack of the airfoil is 

displayed as a graph and the Reynolds number is 
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displayed as text. The flow chart of pix2pix for airfoil 

flow field prediction is shown in Figure 3.  

 
Fig. 3. The flow chart of pix2pix for airfoil flow field 

prediction 

 

The objective function for training is as Equation (1). 

𝐿𝑐𝐺𝐴𝑁  is a loss function of cGAN, which is optimized 

towards minimizing the parameter for generator and 

maximizing the parameter for discriminator. The 𝐿𝑐𝐺𝐴𝑁 

loss function is the same as Equation (2). 𝐿𝐿1  is 

optimized towards minimizing difference between actual 

value (y) and predicted value G(x). 𝐿𝐿1 is the same as 

Equation (3). λ is the hyper-parameter that balances the 

𝐿𝑐𝐺𝐴𝑁 and 𝐿𝐿1. 

𝐺∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑚𝑎𝑥𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + λ𝐿𝐿1(𝐺)                              (1) 

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥,𝑦[𝑙𝑜𝑔𝐷(𝑥, 𝑦)] + 𝔼𝑥,𝑧[1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧))]           (2) 

𝐿𝐿1(𝐺) = 𝔼𝑥,𝑦,𝑧[∥ 𝑦 − 𝐺(𝑥, 𝑦) ∥1]                                                    (3) 

 

2.5 Dataset 

 

In order to train pix2pix, a dataset was obtained using 

CFD in-house code with genetic algorithm [1]. By 

applying a genetic algorithm, up to 400 airfoil flow fields 

of various shape were obtained for each calculation 

condition. Simulations are performed over the DU 00-

W2-401, DU 00-W2-350, DU 97-W-300, DU 91-W2-

250 and DU 93-W-210 airfoils. Simulations are 

performed at Reynolds numbers of 0.5 × 106, 1.5 × 106 and 

3.0 × 106 and with an angle of attack of 0° to 18°. 

The flow fields are obtained by solving the Reynolds 

Averaged Navier-Stokes (RANS) equations utilizing the 

finite volume method, for which the k-w turbulence 

model is employed. The obtained flow field structure 

was processed into 256×256 velocity field images using 

Tecplot. 

 

3. result 

 

3.1 Implementation Details 

 

We constructed two datasets based on the dataset 

described in subsection 2.5. In Dataset 1, airfoil flow 

field datasets of various shapes were constructed by 

applying a constant angle of attack and Reynolds number 

to 0∘and 1.5×106. In dataset2, five angles of attack and 

three Reynolds numbers were applied to construct airfoil 

flow field data of various shapes. Detailed data set 

information is shown in Table 2. The dataset was divided 

into training data, validation data, and test data by 

dividing the data set in a ratio of 4:1:1.   

We train the model with the ADAM optimizer by 

setting 𝛽1 = 0.5 , 𝛽2 = 0.999  and 𝜀 = 10−8 . The initial 

learning rate is initialized to 0.0002 

 

Table 1. Computational grid system of 8-pitch heat pipe 

 
Condition value 

Dataset1 

Airfoil 

DU 00-W2-401 

DU 00-W2-350 

DU 97-W-300 

DU 91-W2-250 

DU 93-W-210 

Re 1.5×106 

AOA 10∘ 

number of total data : 606 

Dataset2 

Airfoil 

DU 00-W2-401 

DU 00-W2-350 

DU 97-W-300 

DU 91-W2-250 

DU 93-W-210 

Re 0.5×106, 1.5×106, 3.0×106 

AOA 0°, 5°, 10°, 15°, 18°  

number of total data : 12405 

 

3.2 Shape variation (dataset 1) 

 

Dataset 1 was trained on a batch sizes of 2. After 

training process of 250 epochs, the MAEs of training and 

validation datasets were 0.06602 and 0.1162, 

respectively. The total learning time is 2 hours 22 

minutes. The MAE of the test data set was 0.1369. The 

test result is shown in Figure 4.  

 

 
Fig. 4. The flow chart of pix2pix for airfoil flow field 
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3.3 Shape, angle of attack, and Reynolds number 

variation (dataset 2) 

 

Dataset 2 was trained on a batch sizes of 10. After 

training process of 50 epochs, the MAEs of training and 

validation datasets were 0.06425 and 0.06245, 

respectively. The total learning time is 7 hours 10 

minutes. The MAE of the test data set was 0.0764. The 

test result is shown in Figure 5. 

 

 

Fig. 5. The flow chart of pix2pix for airfoil flow field 

 

4. Conclusion 

 

The pix2pix method is implemented to predict the 

airfoil flow field using thick airfoil shapes with various 

Reynolds numbers and angle of attack. CNN has been 

successfully implemented using fully implicit high 

resolution scheme based compressible CFD code with a 

genetic algorithm to train pix2pix. As a result of the deep 

learning, vortical flow fields can be predicted well 

through pix2pix method. In the future, the pix2pix 

method will be further advanced and used as a design 

tool. 

The pix2pix method is a universal solution to the 

image-to-image translation problem. Therefore, various 

applications are possible depending on a dataset used for 

training. In the nuclear field, we will obtain a temperature 

and pressure field datasets of the Bayonet Heat 

Exchanger of the Micro Reactor. In addition, by training 

the constructed datasets with the pix2pix method, 

Convolutional Neural Networks that predict the 

temperature and pressure fields of the Bayonet Heat 

Exchanger will be implemented and used as a shape 

optimization design tool. 
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