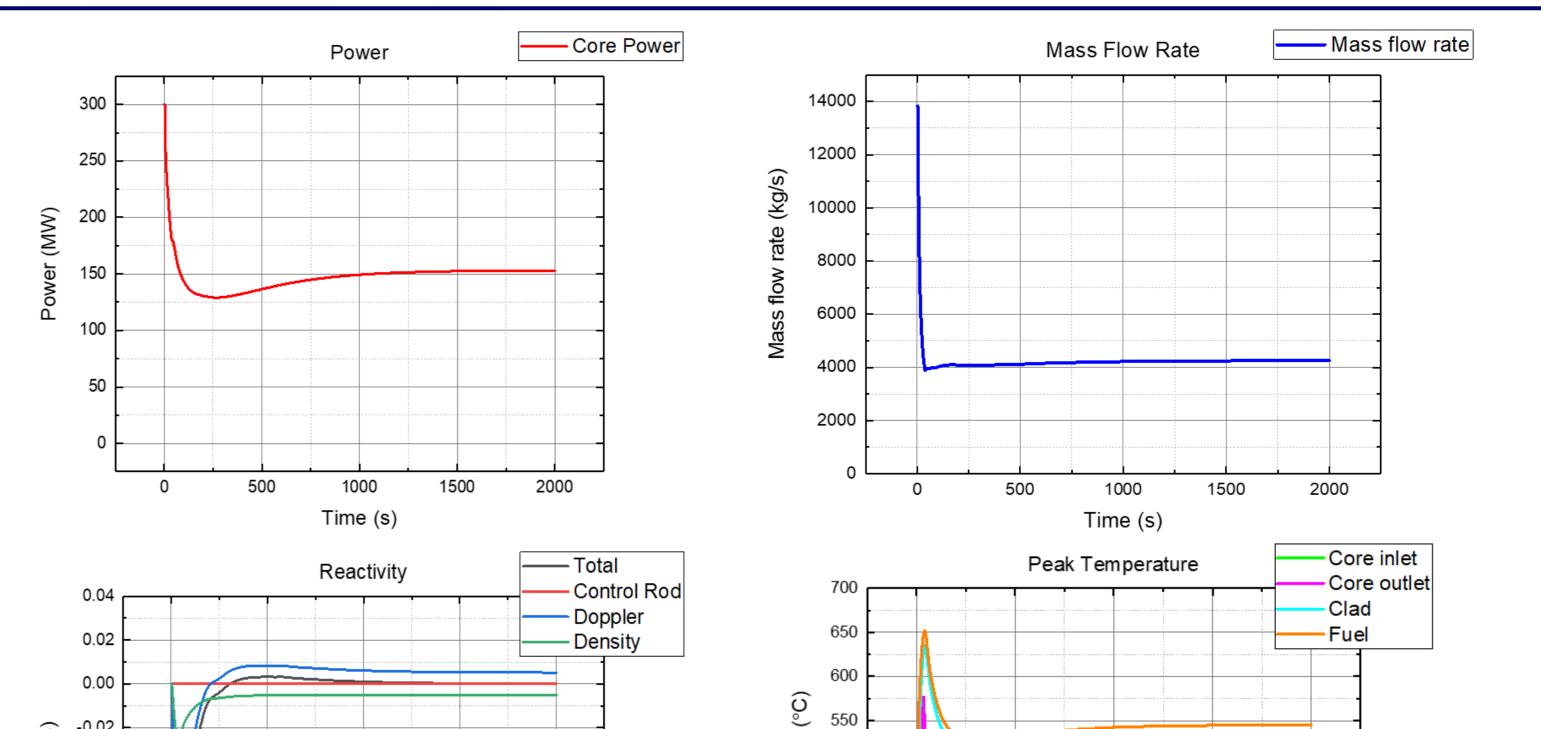
ULOF and UTOP Analyses of a Conceptual Small Liquid Metal-cooled Fast Reactor

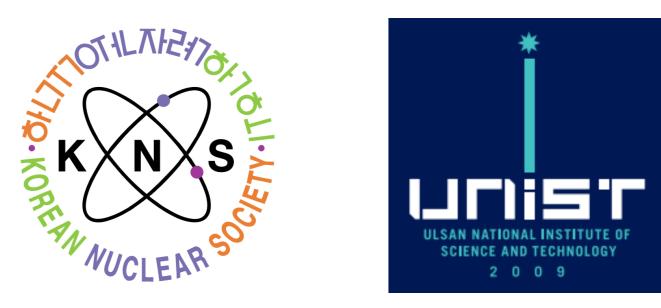
Joo Hyung Seo, Ji Yong Kim, In Cheol Bang* Department of Nuclear Engineering Ulsan National Institute of Science and Technology (UNIST)

Introduction

Motivation

One of the new concept reactors : Small liquid-metal cooled fast reactor (SLFR) is studied.


SLFR have some advantages :


Atmospheric pressure operation	Low activity with water and steam
High boiling point	High retention of fission products

- Localization of LFR technology is necessary \rightarrow UNIST studied and designed the LFR.
- To confirm the specific effects of the LFR \rightarrow Detailed analysis of the designed reactor is required.

Objective

Current LFR safety analysis was performed \rightarrow To evaluate the safety of the current LFR

designed by UNIST

Current LFR

 Table. 1. Current LFR design components

Primary side					
Power	300MWth	300MWth Reactor type			
Fuel material	UO ₂	Clad material	15-15Ti		
Working fluid	Lea	Lead-Bismuth Eutectic (LBE) coolant			
Natural circulation	4m he	4m height difference (between SG, Core)			
Secondary side					
SG power	50MWth	Number of SGs	6		
DHR train power	12MWth	Number of DHR trains	5 2		

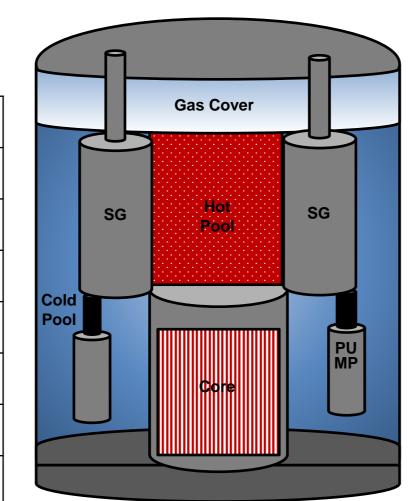
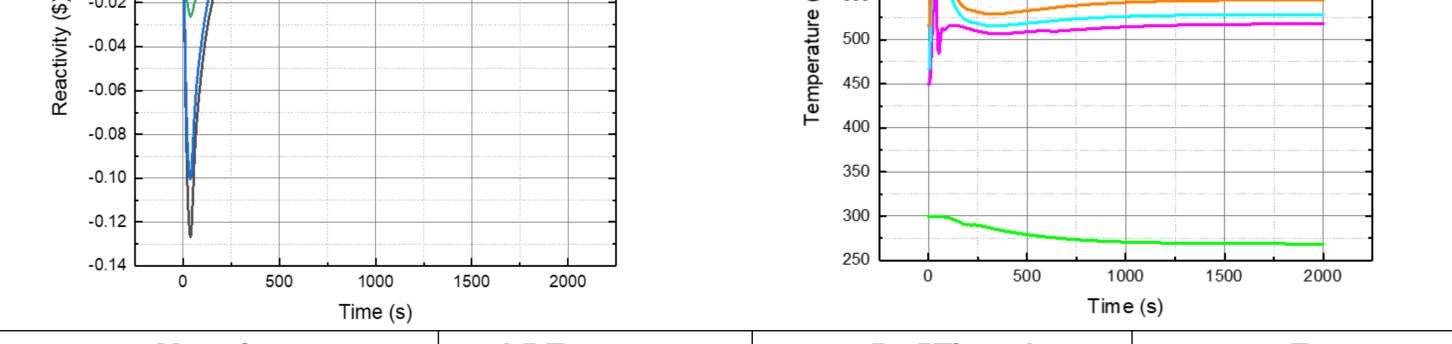
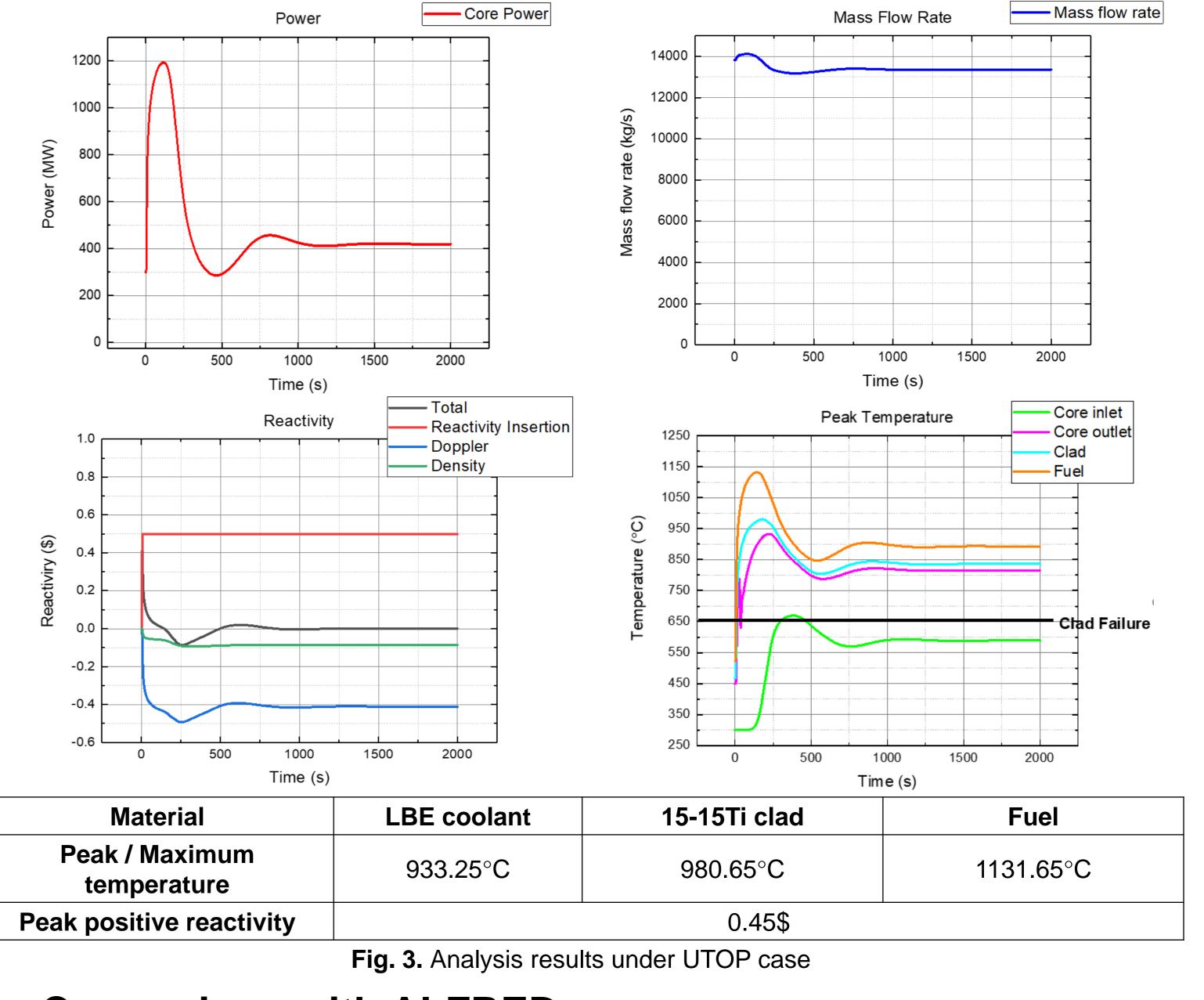



Fig. 1. Designed LFR primary loop schematic diagram

Table. 2. Design parameters comparisons of few LFRs and SMR

	Studied LFR ALFRED		SSTAR	PGSFR	
Designer The present study		Ansaldo Nucleare	Argonne National Laboratory	Korea Atomic Energy Research Institute	
Туре	Pool	Pool	Pool	Pool	
Power	300MWth	300MWth	45MWth	400MWth	
Coolant	LBE	LBE Pb	Pb	Sodium	
Core inlet temperature	mperature 300°C 400°C	420°C	390°C		
Core outlet temperature 450°C	450°C	480°C	564°C	545°C	
System pressure	1 bar	1~1.5 bar	1 bar	~1 bar	
Secondary working fluid Water / Steam		Superheated steam	Supercritical CO ₂	Water / Steam	



Material	LBE coolant	15-15Ti clad	Fuel	
Peak / Maximum temperature	576.68°C	634.69°C	659.51°C	

Fig. 2. Analysis results under ULOF case

• Unprotected Transients Overpower (UTOP)

- Negative reactivity feedback is inserted : Doppler effect, negative coolant temperature coefficient.
- The new state is established Has a higher power level
- The peak cladding temperature \rightarrow Did not exceed the melting point but exceeded the clad failure point.

Analysis Methods

Safety Criterion

Table. 3. Safety criteria along with the reactor components

Material	Safety criterion	Reason
UO ₂ fuel	Below 2740°C	Fuel melting temperature
	Below 1500°C	Clad melting temperature
15-15Ti clad	Below 650°C	Clad failure criterion
LBE coolant	125°C to 1670°C	Over LBE melting temperature, under boiling temperature

Reactor structure corrosion : 500°C ~ 550°C temperature or 2m/s over coolant velocity \rightarrow Not included in the accident safety criterion.

Analysis Condition

Low melting point, low chemical reactivity of LBE \rightarrow Reactor inherent safety increased. **Table. 4.** The importance of overcooling accidents according to the coolant type

Lead coolant		LBE coolant
High melting temperature (327°C)	VS	Low melting temperature (125°C)
Overcooling accidents are important		Overcooling accidents are not important

Comparison with ALFRED

Table. 6. Peak temperatures comparison with ALFRED at ULOF

	The current LFR	ALFRED
Peak coolant temperature	577°C	710°C
Peak clad temperature	635°C	764°C

ULOF, ULOHS, ULOOP, UTOP were analyzed. The SCRAM signal failed in all unprotected case.

Results and Discussions

 Table. 5. Analysis base introduction

Code used for analysis	MARS-LBE	
Introduced accident	ULOF, UTOP	
SCRAM signal	Pump speed < 5 rad/s	
	Core outlet temperature > 470°C.	

Unprotected Loss of Coolant (ULOF)

- Reactor temperature rises \rightarrow Negative reactivity feedback occurs : Doppler effect, negative coolant temperature coefficient.
- New power state is established Overall higher temperature, lower thermal margin.
- Peak temperatures of coolant, clad, and fuel are below the safety criterion.

- ALFRED had a higher temperature and lower thermal margin in ULOF case.
- Lead coolant in ALFRED \rightarrow Higher core inlet temperature, higher mass flow rate. \succ

Table. 7. Peak temperatures and power comparison with ALFRED at UTOP

	The present LFR	ALFRED
Reactivity insertion	400pcm	250pcm
Maximum power	1194MWth	610MWth
Peak coolant temperature	933°C	Below 600°C
Peak clad temperature	981°C	Below 600°C

The LFR had higher peak temperature in this case: reactivity insertion by removing one control rod assembly \rightarrow Control rod reactivity insertion has a difference

Summary

- Two accidents with higher peak temperatures were introduced : ULOF, UTOP
- New states were established, and peak cladding temperature was below the melting point. \checkmark
- Peak coolant temperature, Maximum fuel temperature : Below the safety criterion.
- New states had a lower thermal margin, so operating the reactor at a new state is not recommended.