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1. Introduction 

 
Estimation of accident source term is an important 

procedure to protect public in the event of NPP (nuclear 

power plant) accident. By the Korean law of radiation 

protection [1], in case of a radiation emergency, 

population in the PAZ (precautionary action zone) is 

evacuated precautionary to prevent deterministic health 

effects and population in the UPZ (urgent protective 

action planning zone) is determined to evacuate by 

radiation monitoring or dose assessment using a 

computational code in order to reduce stochastic health 

effects. When performing a dose assessment, providing 

a source term information quickly and accurately is vital 

as the starting point of radiological consequence analysis. 

The definition of source term is information about a 

release of radioactive materials to the environment in 

the event of an accident. Information of source term 

includes magnitude of release and manner of release. 

Magnitude of release means amount of release and 

manner of release contains starting time of release, 

duration of release, height of release, energy of release, 

particle size distribution of release, and etc. Frequency 

of a release is also an important factor, when performing 

a PSA (probabilistic safety assessment). 

When Fukushima Daiichi accident happened, 

SPEEDI (System for Prediction of Environmental 

Emergency Dose Information) failed to estimate 

accident source term and could not be utilized to assist 

the decision of public protection [2]. From the 

experience of Fukushima Daiichi accident, importance 

of a system to provide accurate and quick source term 

estimation was highly increased. 

In a recent study performed by KAERI (Korea 

Atomic Energy Research Institute), deep learning 

approach is employed to perform a rapid and accurate 

source term estimation and overcome the limitation of 

the current source term estimation technics. In order to 

conduct deep learning, generation of DB (data base) for 

learning and validation is a mandatory procedure. In 

order to build DB, selecting important input & output 

parameters and selecting important scenarios are also 

necessary. In this study, as the previous steps to develop 

a deep learning model, the ways and procedures are 

introduced such as how important input and out 

parameters for learning are selected, how representative 

severe accident scenarios were selected, and how DB 

was generated. 

Overall strategy of deep learning modeling to 

estimate accident source term is introduced in Yoon et 

al., 2021 [3]. 

2. Methods and Results 

 

The major objective of this study is predicting an 

accident source term quickly and accurately from 

information provided by AtomCARE (Atomic 

Computerized Technical Advisory System for a 

Radiological Emergency). Therefore, learning and 

validation DB should be produced in order to achieve 

the main objective of the study. 

 

2.1 Selection of Major Input and Output  

 

After reviewing various parameters which can be 

obtained from the AtomCARE [4], 25 parameters were 

chosen as learning inputs highly related with source 

releases. Then, these parameters were mapped with 

corresponding MAAP (Modular Accident Analysis 

Program) parameters, since DB are established by 

performing severe accident analyses using MAAP5 

code in this study. As the order of an AtomCARE 

parameter is not always same with that of corresponding 

MAAP parameter, it is necessary to match them by 

treating the print of MAAP output. Selected parameters 

as deep learning input are as follow: 

 

- Pressure in pressurizer 

- Collapsed water level in pressurizer 

- Collapsed water level in Rx-vessel 

- Temperature of water in loop 1 hot leg 

- Water mass flow in cold leg 1A 

- Water mass flow in cold leg 1B 

- Water mass flow in cold leg 2A 

- Water mass flow in cold leg 2B 

- Pressure in the S/G 1 

- Pressure in the S/G 2 

- Collapsed water level in the S/G 1 

- Collapsed water level in the S/G 2 

- Temperature of gas in loop 1 upper plenum 

- Hottest core node temperature 

- Pressure in accumulator 

- High pressure injection system flowrate 

- Low pressure injection system flowrate 

- Containment spray system flowrate 

- Water level in refueling water storage tank 

- Pressure in containment building compartment 

#3 

- Temperature of gas in containment building 

compartment #3 

- Collapsed water level in containment building 

compartment #2 
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- Collapsed water level in containment building 

compartment #6 

- Mole fraction of H2 in containment building 

compartment #3 

 

A release of radioactive materials can be directly 

expressed as release amount by mass (g) or radioactivity 

(Bq). Another way to express the amount of release is 

the release fraction multiplied by core inventory. 

Release fraction can be a more general choice as the 

output for deep learning because a core inventory can 

vary by burnup and other conditions and release amount 

is dependent on the core inventory. Accordingly, release 

fraction of 22 elements in Table I was chosen as the 

output of deep learning. 

 

Table I: Release Fraction of Selected Elements 

MAAP Variables and Corresponding Elements [5] 

FMRELEL(1) Xe FMRELEL(12) Mo 

FMRELEL(2) Kr FMRELEL(13) Tc 

FMRELEL(3) I FMRELEL(14) Ru 

FMRELEL(4) Rb FMRELEL(15) Sb 

FMRELEL(5) Cs FMRELEL(16) Te 

FMRELEL(6) Sr FMRELEL(17) Ce 

FMRELEL(7) Ba FMRELEL(18) Pr 

FMRELEL(8) Y FMRELEL(19) Nd 

FMRELEL(9) La FMRELEL(20) Sm 

FMRELEL(10) Zr FMRELEL(21) Np 

FMRELEL(11) Nb FMRELEL(22) Pu 

 

2.2 Selection of Accident Scenario 

 

Phenomena of severe accidents, such as pressure 

boundary break, DCH (direct containment heating), 

MCCI (molten core concrete interaction), steam 

generation, and hydrogen generation progress totally 

different with RCS (Reactor Cooling System) pressure. 

Therefore, LOCA (loss of coolant accident) 

representing low RCS pressure and transient 

representing high RCS pressure were selected as 

representative accident scenarios. By referring to the 

contribution to the CDF (core damage frequency) of a 

reference PWR (pressurized water reactor), MLOCA 

(medium LOCA) and TLOCCW (total loss of 

component cooling water) were chosen as representative 

initiating event for LOCA and transient, respectively. 

 

2.3 Establishment of Data Base for Deep Learning 

 

For MLOCA scenario, as shown in Fig. 1, 22 branch 

scenarios were categorized by the operation of safety 

systems and 12 branch scenarios were selected which 

are covering 99.99% of CDF (Core Damage Frequency). 

 

 
Fig. 1. Event Tree of Safety System Operation in MLOCA 

Scenario 

 

For those 12 detailed scenarios, a large numbers of 

sampling cases were produced by break size and other 

uncertain variables of MAAP code. These sampling 

cases were defined as analysis cases and input DB and 

output DB were produced by performing MAAP5 

analyses for each analysis case. 

 

 
Fig. 2. Example of Deep Learning Output Data (Linear Scale) 

 

 
Fig. 3. Example of Deep Learning Output Data (Log Scale) 
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Fig. 2 and Fig. 3 show the examples of output data 

for deep learning depicted in linear scale and log scale, 

respectively. A large amount of learning and validation 

DB was established to develop a deep learning model to 

estimate accident source term. 

 

3. Conclusions 

 

In order to develop a quick and accurate source term 

estimation method, deep learning technic was employed 

in a recent research of KAERI. In order to produce a 

learning and validation DB, important variables were 

selected as input and output of DB and representative 

severe accident scenarios were also chosen. Finally, 

deep learning DB was built as a previous step to 

develop a deep learning model. 

 

4. Further Work 

 

DB is possibly updated by the feedback during 

developing a deep learning model. 
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