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1. Introduction 

 
After the Fukushima Daiichi accident occurred in 

2011, it allows us to rethink how we are able to 
strengthen the operational safety of NPPs. Among 
lessons learned from the Fukushima Daiichi accident, a 
lack of information is drawn as one of the key issues [1, 
2]. 'a lack of information' denotes the situation in which 
human operators who have to draw a decision cannot 
access necessary information due to several reasons 
such as the failure of indicators or the limitation of 
dispatching field operators to a local area with a high 
radiation level. To overcome a lack of information, in 
this paper, a dedicated tool, namely DeBRIEF (Deep-
learning Based Reliable Information Estimator for 
Functionality), is proposed. The DeBRIEF is able to 
solve a lack of information by predicting operating 
history based on the behavior of process parameters 
from the past. 

 
2. Methods 

 
This section described the concept of DeBRIEF in an 

aspect of deep learning techniques. In addition, a 
detailed model configuration is described. 

 
2.1 The concept of DeBRIEF 

 
The DeBRIEF is a deep learning model that is able to 

predict operating histories (e.g., pump action and time, 
human action and time) by using the behavior of 
process variables from past to present. Figure 1 
expresses the concept of DeBRIEF. In Figure 1, the left 
graph shows the behavior of process variables in the 
nuclear power plants (NPPs) and the right graph shows 
the results of the DeBRIEF, which is predict operating 
histories. 
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Fig. 1. The concept of DeBRIEF 

 
In the only view of deep learning techniques, the 

DeBRIEF is a multi-label classification model. In 
general, multi-class classification has been well used for 
accident diagnosis or others diagnosis [3, 4]. Fig. 2 
shows differences between the multi-class and the 
multi-label. For the multi-class, a sample has only one 
class, on the contrary, the multi-label has one or may 
class for a sample. In summary, the multi-class is 
mutually exclusive, and the multi-label is a non-
exclusive. 

 

C1 C2 C3 C4

Sample 1 0 1 0 0

Sample 2 0 0 1 0

Sample 3 1 0 0 0

Multi-class

C1 C2 C3 C4

Sample 1 0 1 1 0

Sample 2 1 0 1 0

Sample 3 1 0 0 1

Multi-label

 
Fig. 2. Comparing the multi class and multi label 

 
2.2 The configuration of DeBRIEF 

 
The DeBRIEF is developed by referring to a resnet 

structure and modified using a 1-dimensional 
convolution (1D conv.). The reason why uses the 1D 
conv. is because a problem considered in this paper is 
the time-series.  

The characteristic of the resnet is a residual 
connection, and one residual connection is called a 
residual block [5]. By adapting the residual connection, 
it avoids a gradient vanishing problem. Generally, the 
resnet consists of the residual block that is serially 
connected to deeper. The conventional residual block is 
illustrated in Fig. 3.  
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Fig. 3. Residual connection in the conventional resnet 
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In this paper, the conventional residual block is 
modified referring Ref. 6. Fig. 4 and Fig 5 show the 
pre-block and modified residual block. In the Fig. 4 and 
Fig 5, BN is an abbreviation of Batch normalization. In 
addition, Conv1D (N, 7, s=2) means the number of 
filter is N, kernel size is 7, and strides is 2. Similarly, 
Maxpooling 1D (3, s=2) means kernel size is 3 and 
strides is 2. 
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Fig. 4. Designed pre-block 
 
In the Fig. 5, the residual connection is changed by 

adding the average pooling layer and 1D conv layer. 
The conventional residual block has a bottleneck 
problem. To avoid bottleneck problem, a small kernel 
size is applied. 

 

 
Fig. 5. Modified residual  

 
The developed model structure is illustrated in Fig. 6. 

To handle the multi-label problem, the developed model 
is divided into the parent model and the child model. 
The parent model transfers the weight to the child 
model. 

The parent model consists of the pre-block and 
residual block (N is 64, 128, and 256). The child model 
is connected as many as the number of variables that 
need to be predicted. Table 1 summarized 
hyperparameter. 
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Fig. 5. The structure of developed model 

 
Table 1. Hyperparameter in developed model 

Parameter Value 
Activation function LeakyRelu(0.5) 
Optimizer (epsilon) NAdam (0.1) 

Learning rate 0.0001 
Cost function Categorical_crossentropy 

Epoch 300 
Batch size 32 

 
3. Results and conclusions 

 
To generate training and test data for the model, 

accident scenarios that various conditions that can be 
considered in the SPTA (standard post trip action) for 
SGTR (steam generator tube rupture) and MSLB (main 
steam line break). The reference NPP (nuclear power 
plant) for generating data is OPR-1000 (optimized 
power reactor-1000), and a MARS (multi-dimensional 
analysis of reactor safety) was used for the simulation 
of plausible accident scenarios. The initial condition of 
SGTR and MSLB is described in Table 2. Table 3 and 4 
describe the process parameter (model input) and 
control variables (model output). The control variables 
are role of operating histories in this paper. 

 
Table 2. Initial condition of SGTR and MSLB 

Event Location Size 
(Area; A) 

Calculation time / 
Sampling rate 

SGTR Lower side at 
tube A, 2A, 4A 

1 hour / 1 sec 
MSLB In containment A, 2A 
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Table 3. List of process parameter 

Process parameter 
Time 

Reactor Power 
SG1&2 level difference 

RCP1 on/off 
RCP2 on/off 
RCP3 on/off 
RCP4 on/off 

SG1 level (wide) 
SG2 level (wide) 

SG1 level (narrow) 
SG2 level (narrow) 
FW flow (to SG1) 
FW flow (to SG2) 

AFW flow (to SG1) 
AFW flow (to SG2) 

PZR pressure 
PZR level 

RCS subcooling margin (RCS) 
SG1 pressure 
SG2 pressure 

 
 

Table 4. List of control variables 

Control variables Size Time 

PZR Level control 0, 50, 100 0, 1.77, 3.1, 
5.425, 9.3 

PZR heater control 0, 50, 100 0, 2.06, 3.6, 6.3, 
10.3 

SIAS Activation 0, 1 0, 2.06, 3.6, 6.3, 
10.3 

RCP stop 0, 1 0, 2.06, 3.6, 6.3, 
10.3 

Open TBV 0, 5, 10, 25, 50, 
75, 100 

0, 2.629, 4.6, 
8.05, 13.8 

Open ADV 0, 5, 10, 25, 50, 
75, 100 

0, 2.629, 4.6, 
8.05, 13.8 

 
 

Table 5. Model accuracy 

Control variables 
Accuracy 

Action Time 
PZR Level control 33 % 74 % 
PZR heater control 64 % 34 % 

SIAS activation 100 % 100 % 
RCP stop 90 % 91 % 
TBV open 97 % 98 % 
ADV open 99 % 92 % 

 
 
Table 5 shows the model accuracy for each control variable. 

The total average accuracy is 81%. Among the control 
variables, the accuracy of PZR level control and PZR heater 
control was calculated to be low. Because SGTR and MSLB 

accidents were already assumed when generating the dataset, 
it is judged that the influence of variables related to PZR is 
insignificant. 

In this study, deep learning model that classifies the 
past operating history based on the behavior of the 
NPPs. The developed model can help decision-making 
in case of an accident, and what-if analysis is expected 
to be possible using the DeBATE (Deep learning based 
accident trend estimator) jointly developed. 

The developed model was calculated to have a total 
average accuracy of 81%. Therefore, more accurate 
performance improvement is needed in further studies. 
There are three main method to improve the 
performance of the model. First, the developed model is 
composed of three residual blocks, so the model's 
performance can be increased by accumulating more 
deeply. Second, the model can be modified to reflect 
better the correlation between variables (influence 
between channels from a deep learning perspective). 
Finally, we can perform model ensembles.  

In addition, more accurate and precise performance 
metrics are needed. If possible, it determines how 
accurate the performance of the developed model is 
through comparison with expert reasoning. If XAI 
technology develops in the future and it combines 
suggested method, it can be more helpful in decision 
making. 
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