Calibration of Miniaturized Tissue Equivalent Proportional Counter with Monte Carlo Simulations with Function Fitting

Mingi Eom¹, Sukwon Youn², Sung-Joon Ye^{1,2*}

^a Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea

^b Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea

Introduction

- A tissue equivalent proportional counter (TEPC) has good performance at microdosimetry in the mixed radiation fields [1].
- A miniaturized TEPC (mini-TEPC), whose the size is smaller 10 times than the conventional TEPC, is helpful for the intense radiation fileds like clinical beams because it prevents the pile-up of signals [2].
- Indirectly ionizing radiation sources like photon and neutron are required to calibrate the mini-TEPC using the 'edge' of their secondary particles.
- This study investigated the proper calibration method using ¹³⁷Cs and ²⁵²Cf with Monte Carlo simulation codes, Geant4 and MCNP6.

Materials & Methods

Monte Carlo simulation setup

- A simple cylindrical mini-TEPC whose height and diameter are 1 mm was constructed with propane-based TE gas and A-150 TE plastic.
- ¹³⁷Cs simulation : 1×10¹⁰ photons of 0.662 keV
 ²⁵²Cf simulation : 1×10⁹ neutrons from Watt spectrum
 2.2×10⁹ photons from LLNL fission model

Fig. 1. Four identical detectors surrounding the point source in the middle point. The blue circle is the propane-based TE gas and the red ring is the A-150 TE plastic.

Results

- $^{-137}$ Cs simulation results Electron edge formed at ~ 10 keV/µm.
- Geant4 and MCNP6 results are in good agreement showing that the electron edge markers are similar.
- The second marker $(y_{\delta\delta})$ is closest to the analytical electron edge, which was calculated using the NIST electron range dataset.

Fig. 3. Dose distribution spectrum of 137 Cs simulation for the simulated tissue sizes 1 and 2 μ m.

Site size	1 µm			2 µm					
Marker	y _{flex} (keV/µm)	y _{δδ} (keV/μm)	y _{tC} (keV/µm)	y _{flex} (keV/µm)	y _{δδ} (keV/μm)	y _{tC} (keV/µm)			
Geant4	9.33	11.63	12.83	6.8	8.64	9.6			
MCNP	8.44	11.53	13.13	6.27	8.58	9.78			
Analytical	11.15			8.36					
Table 1. T	Three calculated markers of photon source and analytical electron edge								

- 2) Calibration method
- The secondary particles, electron from photon and proton from neutron, have their edges in the dose distribution spectrum.
- Selection of the appropriate calibration point from Fermi-like function fitted at the edge region [3]

²⁵²Cf simulation results – Proton edge formed at ~ 100 keV/µm.
 The proton edge markers from MCNP6 result are smaller than those from Geant4 result.

Fig. 4. Dose distribution spectrum of 252 Cf simulation for the simulated tissue sizes 1 and 2 μ m.

Site size	1 μm			2 µm		
Marker	y _{flex} (keV/µm)	$y_{\delta\delta}$ (keV/µm)	y _{tC} (keV/µm)	y _{flex} (keV/µm)	y _{δδ} (keV/μm)	y _{tC} (keV/µm)
Geant4	127.52	142.6	150.43	117.2	132.17	139.93
MCNP	119.76	129.91	135.17	110.92	121.7	127.29
Analytical	1/1			1/6		

Discussion & Conclusions

- The major secondary particle of the photon source is the electron only, but heavy charged particles are generated by the neutron, which makes the tail in the spectrum.
- The calibration is possible using photon source and fitting Fermi-like function.
- The alternative methodology is required in case of using the neutron source for the calibration of a mini-TEPC.

References

[1] Fawaz Ali, Design and Characterization of Next-Generation Tissue Equivalent Proportional Counters for use in Low Energy Neutron Fields, Faculty of Energy Systems and Nuclear Science University of Ontario Institute of Technology, 41-42, 2014.

[2] L. De Nardo, V. Cesari, G. Donà, G. Magrin, P. Colautti, V. Conte and G. Tornielli, Mini-TEPCs for radiation therapy, Radiat. Prot. Dosim. 108 345-352, 2004.

[3] V. Conte, D. Moro, B. Grosswendt and P. Colautti, Lineal Energy Calibration Of Mini Tissue-Equivalent Gas-Proportional Counters (TEPC), AIP Conf. Proc. 1530 171, 2013.