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1. Introduction 

 
Recently, in nuclear power plants (NPPs), leakage 

accidents have occurred in the inner tube of the heater 
and the plugging part in the liquid waste management 
system, and welding part of the drain isolation valve at 
the bottom of the steam generator. As the operating time 
of NPPs is prolonged, the frequency of leakage 
accidents is increasing due to the aging of equipment. 
When a leakage accident occurs, it can lead to a severe 
accident if the leakage is not detected early and action is 
not taken. However, early detection of small leakage 
through the present leakage detection system is limited. 
Therefore, the Korea Atomic Energy Research Institute 
is developing an unidentified RCS leakage detection 
system for less than 0.5 gpm leakage [1]. That is, the 
leakage detection system is being developed for the 
purpose of performing leakage detection in a short time 
when a small leakage occurs. In order to determine if a 
leakage has occurred and how much coolant has leaked, 
it is necessary to comprehend the change in the relative 
humidity (RH) of the high-humidity air flowing into the 
sensor tube in the system.  

Accordingly, in this study, when high-humidity air 
was flowing into the sensor tube in the leakage detection 
system, the RH of the initially injected air was predicted 
based on the data about the RH change according to the 
transport distance. To predict the RH, two artificial 
intelligence (AI) methods were applied. The data used 
for the injected air RH prediction is acquired utilizing 
ANSYS Fluent. By predicting the RH of the inflow air, 
it is expected that the leakage can be detected quickly as 
well as the amount of leakage when leakage occurs. 

 
2. Methods 

 
2.1 Support Vector Regression 

 
Support vector regression (SVR) [2, 3] is a method 

derived from support vector machine (SVM), which is a 
machine learning method. SVM was primarily 
developed to solve the classification problem, but with 
the introduction of the - insensitiveε  loss function, 
SVR that can solve the regression problem was 
developed. SVR has outstanding generalization 
performance because it is based on the concept of 
structural risk minimization, which balances the 
complexity of the model with the training data.  

In order to solve the nonlinear regression problem, 
SVR maps the input data into a high-dimensional 

feature space. After then, linear regression is performed 
on the data mapped to the high-dimensional feature 
space. A linear regression function in feature space is 
expressed as: 
 ( ) ( )y f x x bµ ϕ= = ⋅ +   (1) 

where µ  and b  are coefficients and are determined 
through training. ( )xϕ  is high-dimensional feature 
space.  

Also, by minimizing the regularized risk function of 
Eq. (2) at the same time, overfitting is prevented and 
generalization performance is improved.  
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µ  is regularization term that balances the 

complexity and accuracy of the model, C  is a 
coefficient that balances the regularization term and 
empirical risk. ( , )R k kL y y  is - insensitiveε  loss 
function, ε  denotes the radius of the tube surrounding 
the linear regression function (refer to. Fig. 1). 
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Fig. 1. Regression function of SVR using - insensitiveε  
loss function. 
 

The constrained risk function considering the slack 
variables (i.e. ξ +  and ξ −  ) is transformed into Eq. (3) 
based on Eq. (2). 
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where ξ +  andξ − denote upper and lower constraints. 
The optimal regression function is expressed as Eq. 

(4) using the Lagrange multipliers (i.e. iα  and *
iα ) and 

the constrained risk function. 

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In Eq. (4), ( , )kK x x denotes a kernel function. In this 
study, the radial basis function was utilized as the kernel 
function. 
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where σ  is a sharpness of the radial basis kernel 
function.  

In the optimal regression function of SVR, hyper-
parameters such as slack variables (i.e. ξ +  andξ − ), ε , 
and σ  need to be optimized as the parameters affect the 
performance of the SVR. 
 
2.2 Rule-Dropout Deep Fuzzy Neural Network 
 

Rule-dropout deep fuzzy neural network (DFNN) is a 
method that applies rule-dropout technology to DFNN 
[4]. DFNN, which is a basic structure of rule-dropout 
DFNN, is a method based on syllogistic fuzzy reasoning 
consisting of more than two fuzzy neural network 
(FNN) modules (refer to Fig. 2). That is, DFNN can 
effectively deepen fuzzy reasoning based on the 
structure in which multiple FNN modules are 
configured in series. However, overfitting may occur 
because the number of fuzzy rules is the same in all 
FNN modules. Hence, a rule-dropout technique 
adjusting the number of fuzzy rules for each FNN 
module is applied to DFNN. Specifically, the rule-
dropout is a technique for determining the number of 
fuzzy rules to be dropped out along with their 
connectives among the total fuzzy rules. Once an FNN 
module is added, the nodes for total fuzzy rules are 
configured within the added FNN module. After then, 
the nodes for inappropriate fuzzy rules are permanently 
removed. The inappropriate fuzzy rules are determined 
using a genetic algorithm (GA) [5].  

 
1st FNN 2nd FNN (G-1)th FNN

Input x
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
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Fig. 2. Structure of DFNN. 
 

By adjusting the number of fuzzy rules for each FNN 
module through rule-dropout, the fuzzy reasoning 
ability of DFNN can be efficiently improved. In 

addition, an optimal network can be established 
according to the applied data or domains.  

 
2.3 Genetic Algorithm 

 
In this study, a GA [5] was used to construct an 

optimal AI model. The GA is one of the methods to 
solve the optimization problem based on the 
evolutionary process of nature. That is, the GA is a 
technique to find the optimal solution through genetic 
operations such as generation, selection, crossover, and 
mutation. Once the initial population is generated, an 
evaluation is performed on the generated population. 
And then, the genetic operation and evaluation process 
are repeated until the optimal solution is determined. 
The evaluation of the population is performed using the 
fitness function of Eq. (6).  

1 2 maxexp( )RMSF E Eβ β= +   (6) 
where 1β  and 2β  are coefficients for errors. RMSE  
and maxE  are root mean square (RMS) and maximum 
errors, respectively: 
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In the study, the slack variables (i.e. ξ +  andξ − ), ε , 
and σ  were optimized using the GA to optimize the 
SVR model. In the rule-dropout DFNN, the FNN 
module is an important factor that affects inference 
performance. Therefore, not only the number of fuzzy 
rules but also c  and s  parameters of the membership 
function were optimized using the GA. The membership 
function is represented as follows: 
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where ijc  and ijs  are the center position and sharpness 
of Gaussian membership function for i-th fuzzy rule and 
the j-th input, respectively. 

 
3. Data Preparation 

 
ANSYS Fluent was used to acquire data on the RH 

change of the high-humidity air injected into the sensor 
tube. The sensor tube simulated for data acquisition is a 
pipe with a diameter of 6 mm and a length of 100 m 
(refer to Fig. 3) [6]. In the simulated sensor tube, it is 
assumed that the initial 1 m is a high-humidity area, and 
the remaining area is a low-humidity area with a RH of 
20%. In addition, high-humidity air is transferred at a 
velocity of 4 m/s in the sensor tube, and the fluid 
temperature remains constant. The data on RH change 
were acquired by changing the temperature and inlet 
humidity based on the simulated tube. The initial 
conditions are shown in Table I.  

Transactions of the Korean Nuclear Society Virtual Autumn Meeting

October 21-22, 2021



   
    

 
 

The input variables selected for AI training are time 
step, temperature, and RH according to the transport 
distance. In addition, the acquired data were separated 
into train, validation, test data for AI learning and 
testing.  

 

High
Humidity

Low
Humidity

100 m

1 m

100,000 Pa

6 mm
4 m/s

Fig. 3. Simulated sensor tube. 
 

Table I: Initial condition for data acquisition 

No. Temperature (℃) Inlet humidity (%) 

Cases  
1-4 30 

90 
80 
70 
60 

Cases  
5-8 35 

90 
80 
70 
60 

Cases  
9-12 40 

90 
80 
70 
60 

Cases  
13-16 45 

90 
80 
70 
60 

Cases  
17-20 50 

90 
80 
70 
60 

Cases  
21-24 55 

90 
80 
70 
60 

Cases  
25-28 60 

90 
80 
70 
60 

 
4. Prediction Results of Inlet Relative Humidity 

 
The inlet RH was predicted using the SVR and rule-

dropout DFNN models optimized through the GA. The 
prediction performance of the two AI models is shown 
in Table Ⅱ. Overall, the prediction performance of the 
rule-dropout DFNN is superior to that of the SVR. In 
particular, the rule-dropout DFNN shows much lower 
maximum errors on training and test data than the SVR. 
As mentioned in section 2.1, SVR generally shows 
excellent generalization performance; but it has a 
disadvantage of long training time due to increased 
model complexity on large amounts of data. On the 
other hand, rule-dropout DFNN can effectively deepen 
inference based on structural characteristics. Therefore, 

considering the precision of the model, it is considered 
that the rule-dropout DFNN is more suitable for 
predicting the inlet humidity than the SVR. Fig. 4 shows 
the prediction result of the rule-dropout DFNN.  

 
Table Ⅱ: Comparison of prediction performance of SVR 

and Rule-dropout DFNN 

Methods 

Train data Test data 
RMS 
error 
(%) 

Max 
error 
(%) 

RMS 
error 
(%) 

Max 
error 
(%) 

SVR 0.6726 4.9292 0.6700 4.3634 

Rule-dropout 
DFNN 0.2832 2.8524 0.6645 2.8171 
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Fig. 4. Prediction result of inlet RH according to temperature 
(in case of target inlet RH 90%). 

 
5. Conclusions 

 
In this study, when high-humidity air flows into the 

transfer pipe (sensor tube), the inlet RH of inflow air 
was predicted using AI based on the RH change data 
according to the transport distance. SVR and rule-
dropout DFNN were applied to predict the inlet RH. 
The prediction performance of two models was 
compared based on the precision of the model. Finally, 
it is considered that rule-dropout DFNN is better at 
predicting the inlet RH. By predicting the inlet RH, it is 
expected that leakages can be detected early when 
leakage occurs in the NPPs. In addition, if the 
correlation between the RH of the injected high-
humidity air and the leakage amount is known, the 
leakage amount can also be identified. 
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