Estimation of Conditional Exceedance Probability for LBLOCA using Monte-Carlo and Alternative Method

Dong Gu Kang*, Do Kyun Lim, Il Suk Lee, Deog Yeon Oh, Yong Seok Choi Korea Institute of Nuclear Safety, 62 Gwahak-ro Yuseong-gu Daejeon Korea *littlewing@kins.re.kr

Introduction

- Integrated approach of deterministic and probabilistic method
 - Functional failure probability or a Conditional exceedance probability (CEP)
 - Requires a lot of computational costs or additional statistical techniques
 - Some have used the statistical method, but the direct Monte-Carlo (MC) method has been widely used to calculate the CEP as the computational capability improves.

Direct Monte-Carlo (MC) approach

Increasingly applied to BEPU and integrated method as an alternative uncertainty propagation and quantification method

Model Description and MC Calculations

Model description

- ➢ 10% power uprate of APR-1400
- ➢ LBLOCA by 100% DEGB at RCP Discharge Leg using MARS-KS
- > Two SIPs and two SITs were assumed to be available reflecting previous PSA result

MSSV 691-694 695	MV697	MV797	↑ ↑ ↑ MSSV ↑ ↑ ↑ ↑ 791-794	Parameter	Before PU	After PU
	SG-A MSIV V805	Turbine MSIV Stop Valve	790	Core power (MW)	3983.0	4381.3
				RCS pump flow (kg/s)	5248.0	5248.0
	SIT1 SIT2	SIT4 SIT3		Primary pressure (MPa)	15.5	15.5
(separator)	570 571	573 572	(separator) 7/0	Cold log tomporature (K)	568 0	571 0

- > Most of the previous studies using the MC method have not made statistical estimations
- > Still being debated that how many samples are required to obtain the result with low uncertainty and high convergence

✤ Objective

- LBLOCA calculation using the direct MC method
- Estimation of CEP and their 95% confidence intervals
- Comparison with statistical method for CEP

Model Description and MC Calculations

✤ MC calculations

- > 100, 200, 500, 1000, 2000 samples were made by simple random sampling (SRS) and latin hypercube sampling (LHS)
- Calculations using 5000 samples with SRS were performed as the reference of MC calculations
- 18 uncertainty parameters were considered

No	Models/Parameters	Distribution	Mean	Uncertainty ^{a)}
1	Gap conductance	Uniform	0.95	0.55
2	Fuel conductivity	Uniform	1.0	0.153
3	Core power	Normal	1.0	0.01
4	Decay heat	Normal	1.0	0.033
5	Groeneveld CHF lookup table	Normal	0.985	0.2638
6	Chen nucleate boiling correlation	Normal	0.995	0.1505
7	Chen transition boiling correlation	Normal	1.0	0.149
8	Dittus-Boelter liquid convection correlation	Normal	0.998	0.127
9	Dittus-Boelter vapor convection correlation	Normal	0.998	0.127
10	Bromley film boiling correlation	Normal	1.004	0.1864
11	Break CD	Normal	0.947	0.0706
12	Pump 2-f head multiplier	Uniform	0.5	0.5
13	Pump 2-f torque multiplier	Uniform	0.5	0.5
14	SIT actuation pressure (MPa)	Uniform	4.245	0.215
15	SIT water inventory (m ³)	Uniform	49.95	4.65
16	SIT water temperature (K)	Uniform	308	14.0
17	SIT loss coefficient	Normal	18.0	2.33
18	IRWST water temperature (K)	Uniform	302.5	19.5

Results and Discussion

Johnson's normal distribution transformation method

$$z = \gamma + \eta \cdot f_i(x, \epsilon, \lambda) \qquad f_i(x, \epsilon, \lambda) = \ln\left(\frac{x-\epsilon}{\lambda+\epsilon-x}\right): \qquad S_B \text{ distribution}$$
$$f_i(x, \epsilon, \lambda) = \ln(x-\epsilon): \qquad S_L \text{ distribution}$$
$$f_i(x, \epsilon, \lambda) = \operatorname{asinh}\left(\frac{x-\epsilon}{\lambda}\right): \qquad S_U \text{ distribution}$$

Sample size	SRS					LHS						
	type	η	γ	λ	ϵ	p-value	type	η	γ	λ	ϵ	p-value
100	SB	1.08	-0.03	450	1130	0.73	SB	1.01	0.22	413	1153	0.59
200	SL	5.71	-34.9		888	0.96	SB	1.55	0.81	641	1099	0.98
500	SB	1.11	-0.03	442	1132	0.65	SB	2.68	2.44	1178	999	0.92
1000	SB	3.15	2.67	1328	942	0.36	SB	3.25	2.51	1320	925	0.52
2000	SB	3.21	1.87	1209	910	0.55	SB	1.75	0.75	674	1074	~ 0.00
5000	SB	2.14	1.08	840	1022	~ 0.00						

Results and Discussion

Comparison of CEPs by Monte-Carlo and Johnson transformation method

- > For example, for 100 sample size case with SRS, the transformed data followed a normal distribution with a mean of -0.068 and a standard deviation of 0.967
- ▶ $P_{exc} = P(PCT > 1477 K) = P(z > 1.278) = 0.0818$

Korean Nuclear Society Spring Meeting Jeju, Korea, May 19-20, 2022